ارتقاء عامل پارسل نانوآنتن‌های پاپیونی پلاسمونیکی برای گسیلنده‌های نقطۀ کوآنتومی InGaN/GaN در باند سبز

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 عضو هیات علمی

2 دانشجوی کارشناسی ارشد در دانشگاه شهید چمران اهواز

چکیده

در این مقاله، نانو‌آنتن‌های پلاسمونیکی پاپیونی (به‌صورت دو منشور مقابل هم) برای ارتقاء میدان الکتریکی و عامل پارسل گسیلنده‌های نقطۀ کوآنتومی InGaN/GaN در منطقۀ سبز طراحی شدند. برای این کار، ابتدا فلزات طلا، نقره، مس و آلومینیوم بررسی شدند. نتایج اولیه نشان دادند که نانو پاپیون‌های آلومینیومی برای برانگیختگی‌های با طول‌موج نزدیک باند سبز مناسب‌تر هستند. سپس، اثر اندازه، گاف و زیرلایۀ نانوپاپیون‌های آلومینیومی بررسی شدند. نتایج نشان دادند که نانوآنتن‌های پاپیونی آلومینیومی با طول منشورهای 6/63 نانومتر، ضخامت 30 نانومتر، زاویۀ راس 30 درجه و گاف 20 نانومتر، وقتی روی زیرلایۀ گالیوم‌نیتراید‌ـ‌شیشه رشد داده شوند، عامل پارسلی برابر با 81 در طول موج 535 نانومتر دارند. اگر به جای گالیوم‌نیتراید‌ـ‌شیشه از زیرلایۀ آلومینیوم‌نیتراید‌ـ‌شیشه استفاده شود، عامل پارسل به 3/86 و طول‌موج تشدید به 495 نانومتر می‌رسد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Enhancing Purcell’s factor of plasmonic bowtie nano-antennas for quantum dot emitters of InGaN/GaN in green band

نویسنده [English]

  • Mehdi Heydari 2
1 Academic member
2 MSc. student at Shahid Chgamran University of Ahvaz
چکیده [English]

In this work, plasmonic bowtie nano-antennas (as two opposite nano-prisms) for enhancing the electric field and Purcell’s factor of InGaN/GaN quantum dot emitters have been designed. To this end, at first, gold, silver, copper, and aluminum bowties have been investigated. The primary results showed aluminum bowties are more suitable for low wavelength excitations near the green band. Then, the size, gap, and substrate of aluminum bowties have been examined. The results showed aluminum nano-antennas with the length of 63.6 nm, the thickness of 30 nm, top angle of 300, and gap of 20 nm, when are grown on GaN/glass as substrate, results in a Purcell;s factor of 81 with a resonance wavelength of 535 nm. Replacing the AlN/glass with GaN/glass substrate, results in a Purcell’s factor of 86.3 and resonance wavelength of 495 nm.

کلیدواژه‌ها [English]

  • Plasmonics
  • nano-antenna
  • optical cavity
  • Purcell's effect

 

[1]       S.V. Gaponenko, Introduction to nanophotonics, Cambridge University Press, (2010).

[2]      S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, A gallium nitride single-photon source operating at 200 K, Nature Materials 5 (2006) 887-892.

[3]     J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, A highly efficient single-photon source based on a quantum dot in a photonic nanowire, Nature Photonics 4 (2010) 174-177.

[4]     G. Konstantatos, E.H. Sargent, Nanostructured materials for photon detection, Nature Nanotechnology 5 (2010) 391-400.

[5]     J.P. Clifford, G. Konstantatos, K.W. Johnston, S. Hoogland, L. Levina, E.H. Sargent, Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors, Nature Nanotechnology 4 (2009) 40-44.

[6]     M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa, Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system, Nature Physics 6 (2010) 279-283.

[7]     K. Tachibana, T. Someya, Y. Arakawa, Growth of InGaN self-assembled quantum dots and their application to lasers, Journal of Selected Topics in Quantum Electronics  (2000) 475-481.

[8]     L. Ji, Y.-K. Su, S.-J. Chang, S. Tsai, S. Hung, R. Chuang, T. Fang, T. Tsai, Growth of InGaN self-assembled quantum dots and their application to photodiodes, Journal of Vacuum Science & Technology A 22 (2004) 792-795.

[9]     L. Sun, J.J. Choi, D. Stachnik, A.C. Bartnik, B.-R. Hyun, G.G. Malliaras, T. Hanrath, F.W. Wise, Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control, Nature Nanotechnology 7 (2012) 369-373.

[10]      V.M. Aroutiounian, S. Petrosyan, A. Khachatryan, K.J. Touryan, Quantum dot solar cells, in: International Symposium on Optical Science and Technology, International Society for Optics and Photonics (2001) 38-45.

[11]      E.H. Sargent, Colloidal quantum dot solar cells, Nature Photonics 6 (2012) 133-135.

[12]      D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots, Physical Review 57.1 (1998) p 120.

[13]      A. Imamog, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Quantum information processing using quantum dot spins and cavity QED, Physical Review Letters 83 (1999) 4204.

[14]      H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nature Materials 9 (2010) 205-213.

[15]      W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities, Physical Review Letters 96 (2006) 117401.

[16]      E. Fermi, Quantum theory of radiation, Reviews of Modern Physics 4 (1932) 87-132.

[17]      E.M. Purcell, Spontaneous emission probabilities at radio frequencies, Physical Review 69 (1946) 681.

[18]      K. Srinivasan, M. Borselli, O. Painter, A. Stintz, S. Krishna, Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots, Optics Express 14 (2006) 1094-1105.

[19]      D. Vernooy, V.S. Ilchenko, H. Mabuchi, E. Streed, H. Kimble, High-Q measurements of fused-silica microspheres in the near infrared, Optics Letters 23 (1998) 247-249.

[20]      D. Armani, T. Kippenberg, S. Spillane, K. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature 421 (2003) 925-928.

[21]      K.J. Vahala, Optical microcavities, Nature 424 (2003) 839-846.

[22]      P. Lodahl, A.F. Van Driel, I.S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W.L. Vos, Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals, Nature 430.7000 (2004) 654-657.

[23]      T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, D. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432 (2004) 200-203.

[24]      M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, M. Kim, Quantum plasmonics, Nature Physics 9 (2013) 329-340.

[25]      A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, M. Lukin, Generation of single optical plasmons in metallic nanowires coupled to quantum dots, Nature 450 (2007) 402-406.

[26]      S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Physical Review Letters 97 (2006) 017402.

[27]      M. Kuttge, F.J. García de Abajo, A. Polman, Ultrasmall mode volume plasmonic nanodisk resonators, Nano Letters 10 (2009) 1537-1541.

[28]      E.J.R. Vesseur, F.J.G. de Abajo, A. Polman, Broadband Purcell enhancement in plasmonic ring cavities, Physical Review B 82 (2010) 165419.

[29]      A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nature Photonics 3 (2009) 654-657.

[30]      L. Rogobete, F. Kaminski, M. Agio, V. Sandoghdar, Design of plasmonic nanoantennae for enhancing spontaneous emission, Optics Letters 32 (2007) 1623-1625.

[31]      A. Mohammadi, V. Sandoghdar, M. Agio, Gold nanorods and nanospheroids for enhancing spontaneous emission, New Journal of Physics 10 (2008) 105015.

[32]      S. Adachi, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information, Springer Science & Business Media, 1999.

[33]      C. Adelmann, J. Simon, G. Feuillet, N. Pelekanos, B. Daudin, G. Fishman, Self-assembled InGaN quantum dots grown by molecular-beam epitaxy, Applied Physics Letters 76 (2000) 1570-1572.

[34]      Y.-K. Ee, H. Zhao, R.A. Arif, M. Jamil, N. Tansu, Self-assembled InGaN quantum dots on GaN emitting at 520nm grown by metalorganic vapor-phase epitaxy, Journal of Crystal Growth 310 (2008) 2320-2325.

[35]      J. Zhang, M. Hao, P. Li, S. Chua, InGaN self-assembled quantum dots grown by metalorganic chemical-vapor deposition with indium as the antisurfactant, Applied Physics Letters 80 (2002) 485-487.

[36]      R. Mohammadi, A. Unger, H. Elmers, G. Schönhense, M. Shushtari, M. Kreiter, Manipulating near field polarization beyond the diffraction limit, Applied Physics B 104 (2011) 65-71.

[37]      A.M. Khasraghi, S. Shojaei, A.S. Vala, M. Kalafi, Coupling effects in a photonic crystal microcavity with embedded semiconductor quantum dot, Physica E: Low-dimensional Systems and Nanostructures 47 (2013) 17-24.

[38]           O. Painter, J. Vučkovič, A. Scherer, Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab, Journal of the Optical Society of America B 16 (1999) 275-285.

[39]      P.B. Johnson, R.-W. Christy, Optical constants of the noble metals, Physical Review B 6 (1972) 4370.

[40]      J.H. Choi, A. Zoulkarneev, S.I. Kim, C.W. Baik, M.H. Yang, S.S. Park, H. Suh, U.J. Kim, H.B. Son, J.S. Lee, Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates, Nature Photonics 5 (2011) 763-769.