استتار کوآنتومی گاز الکترونی یک بعدی در نانوسیم‌های InAs و ZnO در محیط دی‌الکتریک

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک -دانشگاه بوعلی سینا-همدان

2 Department of Physics, Yazd University

چکیده

در این مقاله با استفاده از یک مدل خود سازگار و با لحاظ تقریب فاز تصادفی، تابع دی‌الکتریک گاز الکترونی نانوسیم‌های نیم‌رسانایInAs  وZnO  پوشیده شده با یک محیط دی‌الکتریک محاسبه شده است. همچنین نشان ‌داده‌ایم هنگامی که این نانوسیم‌ها با محیطی با ثابت دی‌الکتریک بالا (بزرگتر از ثابت دی‌الکتریک نانوسیم نیم‌رسانا ) پوشش داده شود، استتار بارهای آزاد درون ساختار نانو کاهش می‌یابد. در حالی که در محیطی با ثابت دی‌الکتریک کوچک (کوچکتر از ثابت دی‌الکتریک نیم‌رسانا) قدرت تابع دی‌الکتریک افزایش می‌یابد. همچنین رفتار تابع دی‌الکتریک برحسب تغییرات شعاع، چگالی حامل نانوسیم و دی‌الکتریک محیط در دمای هلیوم مایع و در گسترة دمای 300-4 کلوین مورد پژوهش قرار داده‌ایم.

کلیدواژه‌ها


عنوان مقاله [English]

Quantum screening of one dimensional electron gas of ZnO and InAs nanowires in dielectric environment

چکیده [English]

In this study, using a self-consistent model and considering the random phase approximation, we have calculated the screening function of semiconducting zinc oxide (ZnO) and indium arsenide (InAS) nanowires coated by dielectric environment. We show that when these nanowires are coated by high dielectric media (larger than nanowire dielectric) the dielectric function of free charge is reduced inside the nanostructure. However, in a low dielectric media (lower than semiconductor dielectric) the dielectric function is increased. Moreover, the behavior of dielectric function versus the variation of radius, carrier density of nanowire and dielectric media is investigated in liquid helium temperature and in the temperature range of 4-300 K.

کلیدواژه‌ها [English]

  • screening
  • Electron gas
  • Nanowire
  • Dielectric function
[1] H. Sakaki, Scattering suppression and high-mobility effect of size quantized electrons in ultrafine semiconductor wire structures, Japanese Journal of Applied Physics 19 12 (1980) 735-738.

[2] ق. انصاری پور، ز. باقری، بررسی خواصِ گرمایی گرافِنِ چند بلوری، مجلة فیزیک کاربردی دانشگاه الزهرا(س)، سال 5 شمارة2 پائیز و زمستان 1394، 39-23.

[3] و. رفیعی، ا .رمضانی، ص. صلواتی فرد، مطالعه اثر برهمکنش‌های کوتاه برد الکترونی و پهنای چاه کوانتومی بر تابع دی الکتریک نانولایه‌های نیم‌رسانا، مجلة پژوهشسیستمهایبس‌ذره‌ای، دورة 4 شمارة7  تابستان 1393، 18-11.

[4 ] ق. انصاری پور، محاسبة پتانسیل سطحی و جریان زیرآستانه در ماسفت‌های کانال کوتاه، مجلة پژوهشسیستم‌هایبس‌ذره‌ای، دورة 1 شمارة 1 تابستان و پائیز 1390، 8-1.

[5] G. Ansaripour, The effect of hot phonons on the hole drift velocity in a p-type Si/SiGe modulation doped eterostructure, Thin Solid Films 517 21 (2009) 6105-6108.

[6] Y. Cui, Z.H. Zhong, D.L. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors, Nano Letters 3 2 (2003) 149-152.

[7] G. Ansaripour, Mobility of holes in a Si/SiGe metal oxide semiconductor field effect transistor, Thin Solid Films 518 19 (2010) 5599-5603.

[8] S. Kaya, Y-P Zhao, J.R. Watling, A. Asenov, J.R. Barker, G. Ansaripour, G. Braithwaite, T.E. Whall, E.H.C. Parker, Indication of velocity overshoot in strained SiGe p-channel MOSFETS, Semiconductor Science Technology 15 6 (2000) 573.

[9] G. Ansaripour, G. Braithwaite, M. Myronov, O. A. Mironov, E.H.C. Parker, T.E. Whall, Energy loss rates of two-dimensional hole gases in inverted Si/SiGe heterostructures, Applied Physics Letters 76 9 (2000) 1140-1142.

[10] A. Konar, D. Jena, Tailoring the carrier mobility of semiconductor nanowires by remote dielectrics, Journal of Applied Physics 102 (2007) 123705.

[11] A. Konar, T. Fang, D. Jena, Dielectric-environment renormalization of many-body effects in a one- dimensional electron gas, Physical Review B 84 (2011) 085422.

[12] D. Jena, A. Konar, Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering, Physical Review Letters 98 (2007) 136805.

[13] F. Maldague, Many-body correction to the polarizability of the tow-dimensional electron gas, Surface Science 73 1 (1978) 296-302.

[14] G. Fishman, Mobility in a quasi-one-dimensional semiconductor: An analytical approach, Physical Review B 34, (1986) 2394.

[15] D.K. Ferry, S.M. Goodnick, Jonathan Bird, Transport in Nano Structures, Cambridge University Press NY, USA (2009).