بررسی اثر آلایش کروم برروی ویژگی‌های ساختاری و مغناطیسی نانوذرات فریت MnFe2-xCrxO4

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 دانشجو

2 عضو هیات علمی

چکیده

در این تحقیق نانوذرات فریت منگنز با فرمول MnFe_(2-X) Cr_X O_4 (75/0 ،5/0،25/0،0x=) ساخته شد. ویژگی‌های ساختاری نمونه‌ها با پراش سنجی پرتو ایکس(XRD) و میکروسکوپ الکترونی روبشی گسیل میدانی((FESEM، همچنین ویژگی-های مغناطیسی با اندازه‌گیری پذیرفتاری مغناطیسی و مغناطش سنج ارتعاشی (VSM) مورد بررسی قرار گرفت. آنالیز XRD نشان
می‌دهدکه ساختار فریت اسپینلی با فازخالص در نمونه‌ها شکل گرفته است و با استفاده از معادله‌ی شرر اندازه بلورک‌ها در حدود 4 نانومتر به دست آمد. تصاویر FESEM نشان می‌دهد که ذرات کلوخه شده‌اند. نتایج VSM نشان می‌دهد که مغناطش نانوذرات با افزایش میزان آلایش کروم،کاهش می‌یابد. همچنین اندازه‌گیری پذیرفتاری مغناطیسی متناوب نمونه‌ها نشان می‌دهد که پاسخ نمونه‌ها به میدان مغناطیسی خارجی به بسامد اعمالی وابسته است و پس از محاسبات و برازش داده‌ها مشخص شد که مواد ساخته شده در دماهای پایین رفتار ابرشیشه‌اسپینی با برهم‌کنش قوی بین نانوذرات دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of chromium doping effect on the structural and magnetic properties of MnFe2-xCrxO4 ferrite nanoparticles

نویسندگان [English]

  • Hamzeh Ghorbani 1
  • Mahin Eshraghi 2
2 Assistant Professor of University
چکیده [English]

In this investigation, the manganese ferrite nanoparticles MnFe2-xCrxO4) x=0, 0.25, 0.5, 0.75) were prepared. Structural properties of samples were analyzed using X- ray diffraction and field emission scanning electron microscopy (FESEM). By evaluating XRD results, using Scherrer's equation, the size of the crystallites was obtained about 4 nm. FESEM images indicated agglomerated nanoparticles for samples. The magnetic properties have been characterized by using AC susceptometer and vibrating sample magnetometer (VSM). Given the results of VSM, the study found that the magnetization of nanoparticles decreased with increasing Cr doping. AC magnetic susceptibility of samples shows, the response of samples is dependent on the applied frequency. Results showed that the prepared samples at low temperatures indicate super spin–glass behavior with strong interaction between nanoparticles. 

کلیدواژه‌ها [English]

  • Ferrite
  • Nanoparticles
  • Super paramagnetic
  • Super spin-glass
[1] M. Ulrich, J. Garcia-Otero, J. Rivas, A. Bunde, Slow relaxation in ferromagnetic nanoparticles: Indication of spin- glass behavior, Physical Review Letters 67 2 (2003) 024416.

[2] Y. Koseglu, F. Alan, M. Tan, R. Yilgin, M. Oztturk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles, Ceramics. Int 38 5 (2012) 3625.

[3] A. Goldman, Modern Ferrite Technology, springer (2007).

[4] L. C. Branquinho, M. S. Carria˜o, A. S. Costa, N. Zufelato, M. H. Sousa, R. Miotto, R. Ivkov, A. F. Bakuzis, Effect of magnetic dipole  interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia, SCIENTIFIC REPORTS 3 (2013) 2887.

[5] Z.X. Tang, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, Size-dependent Curi temperature in nanoscale MnFe2O4 particles, Physical Review Letters 67 25(1991)3602.

 [6] F. Saffari, P. Kamel, M. Rahimi, H. Ahmadvand, H. Salamati, Effects of Co-substitution on the structural and magnetic propertiesof NiCoxFe2-xO4 ferrite nanoparticles , Ceramics. Int, 108 41(2015) 7352.

[7] A.I. Borhan, V. Hulea, A.R. Iordana, M.N. Palamaru, Cr3+ and Al3+ co-substituted zinc ferrite: Structural analysis, magneticand electrical properties, Polyhedron, 70 (2014) 110.

[8] M.H.R. Khan, A. K. M. Akther Hossain, Investigation of structural and temperature dependent electromagnetic properties of Co0.5Zn0.5CrxFe2-xO4, Journal of Magnetism and Magnetic Materials 391 (2015) 34.

[9] S. M. Patange, S. E. Shirsath, S .S. Jadhav, K. M. Jadhav, Cation distribution study of nanocrystalline NiFe2−xCrxO4 ferrite by XRD, magnetization and Mössbauer spectroscopy, Physics Status Solidi A 209 (2012) 347-352.

[10] A. Baykal, A. Z. Elmal, M. Sertkol, H. Sozeri,Structural and Magnetic Properties of NiCrxFe2−xO4 Nanoparticles Synthesized via Microwave Method, Jounal of superconductivity andNovel Magnetism 28 (2015) 3405.

[11] J. Noguues, V. Skumryev, J. Sort, S. Stoyanov, D. Givord, Shell- driven magnetic stability in core- shell nanoparticles, Physical Review Letters 97 15 (2006) 157203.

 

[12] M. Eshraghi, P. Kameli, Magnetic properties of CoFe2O4 nanoparticles prepared by thermal treatment of ball-milled precursors , Current Applied Physics 11 (2011) 476.

 [13] J.L. Dormann, D. Fiorani, E. Tronce, Magnetic Relaxation in Fine-Particle Systems, Advances in Chemical Physics, John Wiley & sons, Inc (1997) 283.

[14] D.E. Madsen, M.F. Hansen, S. Murup, The correlation between superparamagnetic blocking temperature and peak temperature obtained from ac magnetization measurements, Journal of Physics: Condensed Matter, 20 (2008) 345209.

[15] A.A. Birajdar, Sagar. E. Shirsath, R.H. Kadam, S.M. Patange, K.S. Lohar, D.R. mane, A.R. Shitre, Role of Cr+3 ions on the microstructure development, and magnetic phase evolution of Ni0.7Zn0.3Fe2O4 ferrite nanoparticles, Jounal of alloys and compounds, 512 (2012) 316.

[16] M. Tadic, V. Kusigerski, D. Markovic, I. Milosevic, V. Spasojevic, High concentration of hematite nanoparticles in a silica matrix, structural  and magnetic properties, Journal of Magnetism and Magnetic Materials 321 1 (2009) 12.

[17] B. Aslibeiki, P. Kameli, H. Salamati, M. Eshraghi, T. Tahmasebi, Superspin glass state in MnFe2O4 nanoparticles Journal of Magnetism and Magnetic Materials 322 (2010) 2929.

[18]C.E. Botez, A.H. Adair, R.J. Tackett,Evidence of superspin-glass behavior in Zn0.5Ni0.5Fe2O4 nanoparticles, Journal of Magnetism and Magnetic Materials 27 (2015) 076005.