شبیه‌سازی رشد لایه‌های مورب تلورید کادمیوم و سولفید روی و مقایسه آن با نتایج تجربی

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 هیأت علمی دانشگاه سمنان

2 دانشجو

3 دانشجوی دانشگاه سمنان

چکیده

این پژوهش به شبیه‌سازی لایه‌های ستونی مورب (GLAD) تلورید کادمیوم و سولفید روی با زاویه‌های رشد مختلف بر روی زیرلایه شیشه پرداخته است. نتایج به‌دست آمده از طراحی با نتایج تجربی مقایسه شد. برای شبیه‌سازی فرآیند رشد در این تحقیق از کد شبیه‌سازی NASCAM استفاده شد. این کد بر اساس مدل مونت کارلو کار می‌کند. ابتدا با استفاده از نرم‌افزار  SRIMو SIMTRA انرژی و زاویة ذراتی که به‌سمت زیرلایه حرکت می‌کنند و مدت زمان حرکت محاسبه می‌شود. پس از آن، این فایل به‌عنوان ورودی برای NASCAM برای محاسبه ساختار لایه‌ها استفاده می‌شود. برای نمایش ساختار لایه‌های شبیه‌سازی شده، اطلاعات خروجی نرم‌افزار NASCAM به نرم‌افزارهای JMOL وPoreSTAT  داده شد. نتایج این شبیه‌سازی با نتایج تجربی مقایسه شد و ملاحظه شد که از لحاظ زاویه و ساختار مطابقت خوبی دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Growth simulation oblique layers of cadmium telluride and zinc sulfide and comparison with experimental results

نویسنده [English]

  • reza zareimoghadam 3
چکیده [English]

This research discussed the simulation of the oblique column layers of cadmium telluride and zinc sulfide with different growth angles on glass substrate. The obtained results from the simulation were compared with the experimental results. For the simulation of the growth process, the NASCAM simulation code, that works based on monte carlo, was used. First, using SRIM software and SIMTRA software's, the energy and the particles angle, moving to the substrate, and the movement time are calculated. This file is then used as the input of NASCAM software for calculation of the layer structures. Finally, to show the column, the output data of the NASCAM software was fed into JMOL and PROSTAT software's. The results of the simulation, compared with the experimental results, showed conformity in terms of angle and structure.

کلیدواژه‌ها [English]

  • Oblique column layers
  • Glass substrate
  • NASCAM simulation code
[1] F. Kaempf, Größe und Ursache der Doppelbrechung in Kundtschen Spiegeln und Erzeugung von Doppelbrechung in Metallspiegeln durch Zug, Annalen der Physik 321 (1905) 308-333.

[2] C. Bergholm, Über doppelbrechung in kathoden zerstäubten metallsuchten, Annalen der Physik 348 )1913(1–23.

[3] H. König, G. Helwig, Über die Struktur schräg aufgedampfter Schichten und ihr Einfluß auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten, Optik 6 (1950) 111-124.

[4] O.N. Young, J. Kowal, Optically active fluorite films, Nature 183 (1959) 104-105.

[5] M.T. Taschuk, M.M. Hawkeye, M.J. Brett, Glancing angle deposition. Handbook of Deposition Technologies for Films and Coatings (2010) 621-678.

[6] S. Tawfick, M. Volder, D. Copic, S. J. Park, C.R. Oliver, E.S. Polsen, M.J. Roberts, A.J. Hart, Engineering of micro and nanostructured surfaces with anisotropic geometries and properties, Advanced Materials 24 )2012(1628–74.

[7] Y. He, Y. Zhao, Advanced multi-component nanostructures designed by dynamic shadowing Growth, Nanoscale 3 )2011) 2361–75.

[8] A. Lakhtakia, R. Messier, Sculptured thin films: nanoengineered morphology and optics Bellingham, WA: SPIE press 122 )2005(.

[9] M.M. Hawkeye, M. T.Taschuk, M.J. Brett, Glancing angle deposition of thin films: engineering the nanoscale, John Wiley & Sons, (2014).

[10] J. Musil, P. Baroch, J. Vlček, K.H. Nam, J.G. Han. Reactive magnetron sputtering of thin films: present status and trends, Thin solid films 475.1 (2005) 208-218.

[11] S. Samukawa, M. Hori, SH. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J.C. Whitehead, A.B. Murphy, A.F. Gutsol, S. Starikovskaia, U. Kortshagen, The 2012 plasma roadmap, Applied physics 45) 2012) 253001.

[12] S.Z. Rahchamani, H. Rezagholipour Dizaji, M.H. Ehsani, Study of structural and optical properties of ZnS zigzag nanostructured thin films, Applied Surface Science 356 (2015) 1096-1104.

[13] W. Szmaja, W. Kozłowski, J. Balcerski, PJ. Kowalczyk, J. Grobelny, M. Cichomski. Study of obliquely deposited thin cobalt films. Alloys and compounds 506) 2010( 526–529.

[14] L. Chen, L. Andrea, Y.P. Timalsina, G.C. Wang, T.M. Lu, Engineering epitaxial-nanospiral metal films using dynamic oblique angle deposition. Crystal Growth 13 (2013( 2075–80.

[15] R. Eason, editor. Pulsed laser deposition of thin films. Hoboken, New Jersey, John Wiley & Sons, (2007(.

[16] M.H. Ehsani, H. Rezagholipour Dizaji, S. Azizi, S.F. Ghavami Mirmahalle, F. Hosseini Siyanaki, Optical and structural properties of cadmium telluride films grown by glancing angle deposition, Physica Scripta 88 (2013) 025602-025608.

[17] E.S. Goh, T.P. Chen, S.F. Huang, Y.C. Liu, C.Q. Sun, Bandgap expansion and dielectric suppression of self-assembled Ge nanocrystals. Applied Physics, 109 (2011) 064307.

[18] I. Hodgkinson, Q.h. Wu, J. Hazel, Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Applied optics, 37 (1998) 2653-2659.

[19] T. Hashimoto, K. Okamoto, K. Hara, M. Kamiya, H. Fujiwara. Columnar structure and texture of iron films evaporated at oblique incidence. Thin Solid Films 91 (1982) 145-154.

[20] K. Okamoto, T. Hashimoto, K. Hara, M. Kamiya, H. Fujiwara. Columnar structure and texture of iron films prepared at various evaporation rates. Thin Solid Films 147 (1987) 299-311.

[21] K. Okamoto, K. Itoh. Incidence angle dependences of columnar grain structure and texture in obliquely deposited iron films. Japanese journal of applied physics, 44 (2005) 1382-1388.

[22] X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang , Optical inhomogeneity of ZnS films deposited by thermal evaporation, Applied Surface Science, 254 (2008) 6455–6460.

[23] A.A. Al-Ghamdi, S.A. Khan, A. Nagat, M.A. El-Sadek. Synthesis and optical characterization of nanocrystalline CdTe thin films. Optics & Laser Technology, 42 (2010) 1181-1186.

[24] X. Xiao, G. Dong, J. Shao, H. He and Z. Fan. Optical and electrical properties of SnO 2: Sb thin films deposited by oblique angle deposition. Applied Surface Science, 256 (2010) 1636-1640.

[26] S. Lucas, P. Moskovkin. Simulation at high temperature of atomic deposition, islands coalescence, Ostwald and inverse Ostwald ripening with a general simple kinetic Monte Carlo code. Thin Solid Films, 518 (2010) 5355-5361.

[27] K.V. Aeken, SIMTRA www.draft.ugent.be/