تأثیر پتانسیل تبادلی بر امواج الکتروستاتیکی در پلاسمای نیم‌رسانای کوآنتومی

نوع مقاله: مقاله پژوهشی کامل

نویسنده

عضو هیأت علمی گروه فیزیک دانشگاه اراک

چکیده

انتشار امواج الکتروستاتیکی در یک پلاسمای نیم‌رسانای کوآنتومی در حضور یک میدان مغناطیسی خارجی یکنواخت، به‌کمک مدل هیدرودینامیکی کوآنتومی مورد بررسی قرار گرفته است. تأثیر آثار کوآنتومی همچون، فشار فرمی، پتانسیل بوهم و پتانسیل تبادلی بر ویژگی‌های انتشاری امواج الکتروستاتیکی بررسی شده است. ما دریافتیم آثار کوآنتومی و میدان مغناطیسی خارجی فرکانس امواج الکتروستاتیکی را به‌طور قابل ملاحظه‌ای تحت تأثیر قرار می‌دهند.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of exchange potential on the electrostatic waves in quantum semiconductor plasmas

نویسنده [English]

  • mehran Shahmansouri
Lecturer/ Arak University
چکیده [English]

Propagation of electrostatic waves in a quantum semiconductor plasma has been investigated by a quantum hydrodynamic model in the presence of an external magnetic field. The influence of quantum effects such as Fermi pressure, Bohm potential and exchange potential on the propagation properties of electrostatic waves has been investigated. We found that the quantum effects and external magnetic field significantly modify the electrostatic wave frequency.

کلیدواژه‌ها [English]

  • Semiconductor plasma
  • Hydrodynamic model
  • Quantum effects

 

[1] N.A. Krall, A.W. Trivelpiece, Principles of plasma physics, McGraw Hill, New York, (1973).

[2] L. Stenflo, P.K. Shukla, M.Y. Yu, Nonlinear propagation of electromagnetic waves in magnetized electron-positron plasmas  Astrophysics and Space Science 117 (1985) 303.

[3] M.Y. Yu, P.K. Shukla, L. Stenflo, Alfven vortices in a strongly magnetized electron-position plasma Astrophysical Journal 309 (1986) L63.

[4] M. Marklund, B. Eliasson, P.K. Shukla, Nonlinear propagation of broadband intense electromagnetic waves in an electron-positron plasma, Physics of Plasmas 13 (2006) 083102.

[5] Y. Liu, S.Q. Liu, Nonlinear Behavior of Electromagnetic Waves in Ultra-Relativistic Electron-Positron Plasmas, Contributions to Plasma Physics 51 (2011) 698.

[6] G. Manfredi, How to model quantum plasmas  Fields Inst. Commun 46 (2005) 263.

[7] M. Shahmansouri, The exchange-correlation effects on surface plasmon oscillations in semi-bounded quantum plasma, PhysicsofPlasmas 22 (2015) 092106.

[8] B. Shokri, A.A. Rukhadze, Quantum Surface Wave on A Thin Plasma Layer, PhysicsofPlasmas 6 (1999) 3450-3454.

[9] Y.D. Jung, M. Akbari-Moghanjoughi, Electron-exchange effects on the charge capture process in degenerate quantum plasmas, PhysicsofPlasmas 21 (2014) 032108

[10] M. Akbari-Moghanjoughi, A. Esfandyari-Kalejahi, Low-dimensional relativistic degeneracy in quantum plasmas, Journal of Plasma Physics 79 (2013) 1081-1087.

[11] A.R. Niknam, E. Rastbood, F. Bafandeh, S.M. Khorashadizadeh, Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma, PhysicsofPlasmas 21 (2014) 042307.

[12] M.R. Rouhani, A. Akbarian, Z. Mohammadi, Electrostatic compressive and rarefactive dust ion-acoustic solitons in four component quantum plasma, Iranian Journal of Physics Research 16 (2016) 91-96.

[13] M.R. Rouhani, Z. Mohammadi, A. Akbarian, Characteristic of ion acoustic shock waves in a dissipative quantum pair plasma with dust particulates, Astrophysics and Space Science 349 (2014) 265-271.

[14] M. Shahmansouri, A.P. Misra, Elliptically polarized electromagnetic waves in a magnetized quantum electron-positron plasma with effects of exchange-correlation, Physics of Plasmas 23 (2016) 072105.

[15] K. Ourabah, M. Tribeche, Quantum ion-acoustic solitary waves: The effect of exchange-correlation, Physical Review E 88 (2013) 045101.

[16] M. Bonitz, E. Pehlke, T. Schoof, Attractive forces between ions in quantum plasmas: Failure of linearized quantum hydrodynamics, Physical Review E 87 (2013) 033105.

[17] N. Crouseilles, P.-A. Hervieux, G. Manfredi, Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films, Physical ReviewB 78 (2008) 155412.

[18] R.M. Dreizler, E.K.U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem, Springer-Verlag, Berlin, (1990).

[19] Y.D. Jung, M. Akbari-Moghanjoughi, Electron-exchange effects on the charge capture process in degenerate quantumplasmas, PhysicsofPlasmas 21 (2014) 032108.

[20] H. Khalilpour, Low-frequency surface waves on semi-bounded magnetized quantum plasma, Physics of Plasmas 22 (2015) 122112.

[21] G. Manfredi, P.-A. Hervieux, Autoresonant control of the many-electron dynamics in nonparabolic quantum wells, Applied Physics Letters 91 (2007) 061108.

[22] P.K. Shukla, B. Eliasson, Nonlinear aspects of quantum plasma physics, Physics-Uspekhi 53 (2010) 51.

[23] Y. Liu, S.Q. Liu, Nonlinear Behavior of Electromagnetic Waves in Ultra-Relativistic Electron-Positron Plasmas, ContributionstoPlasma Physics51 (2011) 698.

[24] J.H. Luscombe, A.M. Bouchard, M. Luban, Electron confinement in quantum nanostructures: Self-consistent Poisson-Schrödinger theory, Physical Review B 46 (1992) 10262.

[25] S.M. SZE, Physics of Semiconductor Devices, John Wiley, New York, (2006).

[26] B. Eliasson, P.K. Shukla, Dispersive properties of electrostatic oscillations in a quantum plasma Journal of Plasma Physics 76 (2010) 7.