تاثیر نیروهای کوانتومی بر امواج الکترومغناطیس یونی در یک پلاسمای کوانتومی اسپینی

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک،دانشکده علوم پایه،دانشگاه بین المللی امام خمینی (ره)، قزوین

2 عضو هیات علمی/دانشگاه بین المللی امام خمینی

چکیده

چکیده
در کار حاضر، رفتار امواج الکترومغناطیس یونی در یک پلاسمای گرم با در نظر گرفتن نیروهای کوانتومی مربوط به اسپین الکترون و افت وخیز کوانتومی چگالی همة ذرات پلاسما مورد بررسی قرار می‌گیرد. نتایج حاصل نشان می‌دهند که تصحیح ناشی از افت و خیز چگالی یون‌ها و الکترون‌ها، تاثیر بسزایی بر پاشندگی امواج دارد و باعث پدیدار شدن جملاتی غیر خطی در رابطه‌ی پاشندگی می‌شود. می‌یابیم که اسپین الکترون‌ باعث اصلاح رابطة مربوط به سرعت آلفون شده و بخشی خطی به رابطه‌ی پاشندگی می‌افزاید. علاوه بر این، تاثیر اسپین الکترون به گونه‌ای ظاهر می‌شود که از سهم دیگر پتانسیل کوانتومی بر پاشندگی مد‌های موجی بکاهد. در پایان، برخی حالت‌های ویژه در رژیم‌های کلاسیکی و کوانتومی نیز بررسی می‌گردند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of quantum forces on the electromagnetic ion waves in a spin quantum plasma

نویسندگان [English]

  • Hossein Lotfi Gogarchin 1
  • ahmad mehramiz 2
1 Physics Department, Factually of science, Imam Khomeini International University, Qazvin
2 Imam Khomeini International University
چکیده [English]

In this work, the behavior of electromagnetic ion waves in a warm plasma considering the quantum forces related to the electron spin and the quantum diffraction effects of all plasma particles is investigated. The results show that the quantum correction associated with the quantum potential of ions and electrons has a significant effect on the dispersion of waves and introduces non-linear terms in the dispersion relation. We also find that the spin of electrons contributes to the linear part of the dispersion relation via modification of the Alfven velocity. Moreover, the spin effect of electron decreases the contribution of quantum potential on the dispersion of wave modes. Finally, some special cases in classical and quantum regimes are discussed.

کلیدواژه‌ها [English]

  • Keywords: Quantum plasmas
  • Spin effect
  • Electromagnetic ion waves
  • Dispersion Relation
[1] D. Pines, Classical and quantum plasmas, Journal of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research 2 (1961) 5.

[2] D. Pines, Elementary Excitations in Solids, Oxford Westview press, (1999).

[3] P.A. Markowich, C.A. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer-Verlag, New York, (1990).

[4] A. Mehramiz, J. Mahmoodi, S. Sobhanian, Approximation method for a spherical bound system in the quantum plasma, Physics of Plasmas 17 (2010) 082110.

[5] Y.D. Jung, Quantum-mechanical effects on electron–electron scattering in dense high-temperature plasmas, Physics of Plasmas 8 (2001) 3842-3844.

[6] M. Shahmansouri, Effect of exchange potential on the electrostatic waves in quantum semiconductor plasmas, Journal of research on many-body systems 13 (2017) 95-103.

[6] م. شاه منصوری، تأثیر پتانسیل تبادلی بر امواج الکتروستاتیکی در پلاسمای نیم رسانای کوآنتومی، مجلة پژوهش سیستم‌های بس‌ذره‌ای 13(1396) 103ـ95.

[7] G.V. Shapatakovskaya, Semiclassical model of a one-dimensional quantum dot, Journal of Experimental and Theoretical Physics 102 (2006) 466-474.

[8] L. Wei, Y.N. Wang, Quantum ion-acoustic waves in single-walled carbon nanotubes studied with a quantum hydrodynamic model, Physical Review B 75 (2007) 193407.

[9] K. Becker, A. Koutsospyros, S.M. Yin, C. Christodoulatos, N. Abramzon, J.C. Joaquin, G. Brelles-Marino, Environmental and biological applications of microplasmas, Plasma physics and controlled fusion 47 (2005) B513.

[10] M. Oper, L.O. Silva, D.E. Dauger, V.K. Decyk, J.M. Dawson, Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes, Physics of Plasmas 8 (2001) 2454.

[11] F.A. Asenjo, The quantum effects of the spin and the Bohm potential in the oblique propagation of magnetosonic waves, Physics letters A 376 (2012) 2496-2500.

[12] D.G. Swanson, plasma waves, Academic press, (2003).

[13] T.E. Stringer; Low-frequency waves in an unbounded plasma, Plasma physics 5 (1963) 89.

[14] M. Marklund, P.K. Shukla, kinetic theory of electromagnetic ion waves in relativistic plasmas, physics plasmas 13 (2006) 094503.

[15] Z. Jun, Dispersion Relation of Linear Waves in Quantum Magnetoplasmas, Plasma Science and Technology 7 (2016) 703-707.

[16] M. Marklund, G. Brodin, Dynamics of spin 1/2 quantum plasmas, Physical review letters 98 (2007) 025001.

[17] R.K. Pathria, Statistical mechanics, Butter worth, (1996).

[18] P.K. Shukla, B. Eliasson, Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids, Reviews of Modern Physics 83 (2011) 885.

[19] G. Chabrier, D. Saumon, A.Y. Potekhin, Dense plasmas in astrophysics: from giant planets to neutron stars, Journal of Physics A: Mathematical and General 39 (2006) 4411.

[20] A. Mehramiz, E.S. Soleimani, Dispersion of magneto-acoustic waves in a quantum plasma, Iranian Journal of Physics Research, under press (2018).

[21] A. Mehramiz, E.S. Soleimani, Effects of thermal and quantum aspects on propagation of electromagnetic ion waves in a plasma, The fourth conference of engineering and Physics of Plasmas, Yazd University (2016).

[21] ا. مهرآمیز، ا. شعبان سلیمانی، تأثیر جنبه‌های حرارتی و کوآنتومی بر انتشار امواج الکترومغناطیس یونی در یک پلاسما، چهارمین کنفرانس مهندسی و فیزیک پلاسما، دانشگاه یزد (1395).

[22] F.F. Chen, Introduction to plasma physics and controlled fusion, Plenum press, New York, (1984).