رسانش اسپینی گرافین گاف دار

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک-دانشکده علوم پایه-دانشگاه ملایر-همدان-ملایر- ایران

2 عضو هیأت علمی دانشگاه کرمانشاه

3 عضو هیئت علمی دانشگاه رازی کرمانشاه

چکیده

در این مقاله رسانش اسپینی گرافین گاف دار را محاسبه و نحوه تغییرات آن را با پارامتر های مختلفی از جمله مغناطش، اندرکنش کولنی و گاف انرژی بررسی می کنیم. برای هامیلتونی سیستم از مدل هابارد استفاده می کنیم. در دو وضعیت رسانندگی را به دست می آوریم. یکی بدون در نظر گرفتن اندرکنش کولنی بین الکترون ها و دیگری با حضور اندرکنش کولنی بین الکترون ها. می بینیم که در حالت غیر اندرکنشی با افزایش مغناطش و گاف انرژی رسانندگی اسپینی در فرکانس ثابت افزایش می یابد. در حالت اندرکنشی نمودارهای رسانندگی برحسب فرکانس دو قله دارند که یکی از قله ها مربوط به الکترون های اسپین بالا و دیگری مربوط به الکترون های اسپین پایین است. با افزایش مغناطش قله های مربوط به الکترون های اسپین بالا به سمت فرکانس های پایین تر و قله های مربوط به الکترون های اسپین پایین به سمت فرکانس های بالا تر منتقل می شوند. با افزایش گاف انرژی و قدرت اندرکنش کولنی قله های مربوط به الکترون های اسپین بالا واسپین پایین با هم به سمت فرکانس های بالا تر انتقال می یابند.

کلیدواژه‌ها


عنوان مقاله [English]

Spin conductivity of gapped graphene

نویسندگان [English]

  • saeed marvi 1
  • rostam moradian 2
  • Hamed Rezania 3
1 Department of Physics , Faculty of Science, Malayer, Iran
2 Faculty member of kermanshah university
3 faculty member of kermanshah razi university
چکیده [English]

Spin conductivity of gapped graphene using Hubbard model is calculated. We obtain spin conductivity for two cases, the first we ignore coulomb interaction between electrons and the second in presence of coulomb interaction between electrons. It can be seen that for nonitercting case, by increasing the energy gap and magnetization, the spin conductivity in a constant frequency is increased. In interacting case plots of spin conductivity versus frequency have two peaks. One of them belongs to spin up electrons and the other belongs to spin down electrons. By increasing magnetization the peaks of spin up electrons will be shifted towards lower frequencies and the peaks of spin down electrons will be shifted towards higher frequencies. By increasing the repulsion coulomb interaction and the energy gap, spin up and spin down peaks will be shifted towards higher frequencies.

کلیدواژه‌ها [English]

  • spin conductivity
  • Graphene
  • Hubbard model
[1]F.H. Meisner, A. Honecker, W. Brenig, Thermal transport of the XXZ chain in a magnetic field, Physical Review B 71 (2005) 184415.

[2] S. Langer, R. Darradi, F. Heidrich-Meisner, W. Brenig, Field-dependent spin and heat conductivities of dimerized spin-  chains, Physical Review B 82 (2010) 104424.

[3] M. Sentef, M. Kollar, A.P. Kampf, Spin transport in Heisenberg antiferromagnets in two and three dimensions Physical Review B 75(2007) 214403.

 

[4] Z. Chen, T. Datta, D.X. Yao, Spin transport in the Néel and collinear antiferromagnetic phase of the two dimensional spatial and spin anisotropic Heisenberg model on a square lattice, The European Physical Journal B 86 63 (2013).

[5] Y. Kubo, S. Kurihara, Spin conductivity in two-dimensional non-collinear antiferromagnets, Journal of the Physical Society of Japan 82 11 (2013)113601.

[6] S. Maekawa, A flood of spin current, Nature Materials 8 (2009)777-778.

[7] H. Adachi, J.I. Ohe, S. Takahashi, S. Maekawa, Linear response theory of spin seebeck effect in ferromagnetic insulators, Physical Review B 83 (2011) 094410.

[8] X. Zotos, P. Prelovsek, Evidence for ideal insulating or conducting state in a one-dimensional integrable system, Physical Review B 53(1996) 983.

[9] A.S.T. Pires, L.S. Lima, Low-temperature spin transport in a S=1 one-dimensional antiferromagnet, Journal of Physics: Condensed Matter 21 (2009) 245502.

[10] F. Meie, D. Loss, Magnetization transport and tuantized spin conductance, Physical Review Letters 90 (2003) 167204.

[11] K.A. Van Hoogdalem, D. Loss, Frequency-dependent transport through a spin chain, Physical Review B 85 (2012) 054413.

[12] K.A. Van Hoogdalem, D. Loss, Magnetic texture-induced thermal Hall effects, Physical Review B 87(2013) 024402.

[13] W. Zhuo, X. Wang, Y. Wang, Spin transport properties in Heisenberg antiferromagnetic spin chains: Spin current induced by twisted boundary magnetic fields, Physical Review B 73 (2006) 212413.

[14] A.S.T. Pires, L.S. Lima, Entanglement in the quantum phase transition of the half-Integer spin one-dimensional Heisenberg model, Physical Review B 79(2009) 064401.

[15] N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. Van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448 (2007) 571-574.

[16] S. Sanvito, Organic electronics: Memoirs of a spin, Nature Nanotechnology 2(2007) 204-206.

[17] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials 6(2007)183-191.

[18] F.Sattari, E.Faizabadi, Spin transport through electric field modulatedgraphene periodic ferromagnetic barriers, Physica B, 434 (2004) 69-73.

[19] J.H. Garcia, G.T. Rappoport, Kubo–Bastin approach for the spin Hall conductivity of decorated graphene, 2D Materials 3 (2016).

[20] Z. Liu, L. Jiang, Y. Zheng, Conductivity tensor of graphene dominated by spin-orbit coupling scatterers: A comparison between the results from Kubo and Boltzmann transport theories, Nature scientific reports 6 (2016) 23762.

 

[21] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science 313 (2006) 951-954.

 

[22] I. Zanella, S. Guerini, S.B. Fagan, J.M. Filho, A.G.S. Filho, Chemical doping-induced gap opening and spin polarization in graphene, Physical Review B 77(2008) 073404.

 

[23] D.S.L. Abergel, A. Russell, V.I. Falko, Visibility of graphene flakes on a dielectric substrate, Applied Physics Letters 91 (2007) 063125.

 

[24] G. Giovannetti, P.A. Khomyako, G. Brocks, P.J. Kelly, J.V.D. Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Physical Review B 76 (2007) 073103.

 

[25] V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Ac conductivity of graphene: from tight-binding model to 2 + 1-dimensional quantum electrodynamics International Journal of Modern Physics B 21 (2007)4611.

 

[26] R.M. Ribeiro, N.M.R. Peres, J. Coutinho, P.R. Briddon, Inducing energy gaps in monolayer and bilayer graphene: Local density approximation calculations. Physical Review B 78 (2008) 075442.

 

[27] N.M.R. Peres, M.A.N. Araújo, D. Bozi, Phase diagram and magnetic collective excitations of the Hubbard model for graphene sheets and layers, Physical Review B 70 (2004) 195122.

[28] P. fazekas, Lecture notes on quantum magnetism, World Scientific Publishing Co. Re. Ltd (1998).