بررسی اثرات ترابرد اسپینی در یک حلقه متشکل از سه نقطه کوانتومی

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 دانشگاه خوارزمی

2 هیات علمی دانشگاه علم و صنعت ایران

چکیده

در این تحقیق بر اساس تکنیک تابع گرین برخی خواص ترابرد اسپینی یک ساختار حلقوی متشکل از سه نقطه کوانتمی مورد توجه قرار گرفته است. در این ساختار، یکی از نقاط کوانتومی غیر مغناطیسی در نظر گرفته می شود و برهم کنش اسپین- مدار راشبا روی این نقطه کوانتومی اعمال می شود، درحالیکه دیگر نقاط کوانتومی در این ساختار می توانند خاصیت مغناطیسی داشته باشند. همچنین با تنظیم پارامترهایی مانند انرژی آنسایت نقاط کوانتومی، شار مغناطیسی عبوری از داخل حلقه، مقدار ممان مغناطیسی نقاط کوانتومی و همچنین شدت برهم کنش راشبای اعمالی روی یکی از نقاط کوانتومی میتوان تداخل های کوانتومی اسپینورهای الکترونی که به رابط های خروجی می رسند را دستکاری کرد. با تنظیم درست برخی از این پارامتر ها می توان پلاریزاسیون کامل اسپینی را در خروجی مشاهده کرد یا اسپین های ورودی را به طور کامل جداسازی نمود و اثر اشترن-گرلاخ را شبیه سازی کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Spintronic properties of a triple-quantum-dot ring

نویسندگان [English]

  • mohammad molavi 1
  • Edris Faizabadi 2
1 faculty of physics, Tehran, Iran
2 Member of school of physics Iran University Science and Technology
چکیده [English]

In this study based on Green’s function formalism, we explore some aspects of the spin-dependent properties of a triple-quantum-dot ring structure. In this structure, one of the quantum dots has been considered to be non- magnetic and the Rashba spin-orbit interaction is imposed locally on this dot while the two others can be magnetic. Besides, it can be controlled the interference of electron waves in the output leads by tuning the parameters containing on-site energy of quantum dots, the magnetic flux penetrating inside the ring, the magnetic moment of dots and the Rashba spin-orbit interaction. The optimum parameters may lead to perfect splitting and polarization and simulate the Stern-Gerlach aparateus.

کلیدواژه‌ها [English]

  • Quantum dot
  • Rashba Spin-Orbit interaction
  • spin polarization
  • Spin splitting
  • Greens function
[1] I. Zutic, J. Fabian, S.D. Sarma, Spintronics: Fundamentals and applications, Reviews of modern physics76 (2004)323-410.

[2] M. Molavi, E. Faizabadi, The effects of the interdot and lead-dot coupling on the spin and charge current  through a triple-quantum-dot Ring, IEEE, Transaction on electron devices 6 12 (2017) 5188-5193.

[3] D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots, Physical Review A 57 (1998) 120-126.

[4] E. Cota, R. Aguado, G. Platero, Erratum: ac-Driven Double Quantum Dots as Spin Pumps and Spin Filter, Physical Review Letters 94 107202 (2005) 1-4.

[5] E. Faizabadi, M. Molavi, Radius effect on the spintronic properties of a triangular network of quantum nanorings in the presence of Rashba spin-orbit interaction, Current Applied Physics 17 (2017) 207-213.

[6] H. Khanzadi, H.K. Salehani, Design of logic gates by triple quantum rings, Journal of Nano science Technology 2 2 (2016) 119–121.

[7] M. Molavi, E. Faizabadi, Spin-polarization and spin-flip in a triple-quantum-dot ring by using tunable lateral bias voltage and Rashba Spin-Obit interaction, Journal of Magnetism and Magnetic Materials 428 (2017) 488-492.

[8] E. Faizabadi, L. Eslami,The impact of quantum dots magnetization on spin separation and spincurrent in a multiple quantum-dot ring in the presence of Rashba spin-orbit coupling, Applied Physics Letters 111 124312 (2012) 1-6.

[9] B. Molnár, F.M. Peeters, P. Vasilopoulos, Spin-dependent magnetotransport through a ring due to spin-orbit interaction, Physical Review B 69 155335 (2004) 1-11.

[10] S. Souma, B. Nikoli´c,Spin Hall Current Driven by Quantum Interferences in Mesoscopic Rashba Rings, Physical Review letters94 106602 (2005) 1-4.

[11] K.C. Nowack, F.H.L. Koppens, Yu. V. Nazarov, L.M.K. Vander sypen, Science 318 1430 (2007).

[12] P. Debray et al., Nature Nanotechnology 4 (2009) 759.

[13] A. Reynoso, G. Usaj, C.A. Balseiro, D. Feinberg, M. Avignon, Physical Review Letters 101 (2008) 107001.

[14] J.C. Euges, G. Burkard, D. Loss, Datta-Das transistor with enhanced spin control, Applied Physics Letters 82 16 (2003) 2658-2660.

[15] G. Burkard, D. Loss, D.P. DiVincenzo, Coupled quantum dots as quantum gates Physical Review B 59 (1999) 2070-2078.

[16] D.V. Bulaev, D. Loss, Relaxation and anticrossing in quantum dots: Rashba versus Dresselhaus spin-orbit coupling, Physical Review B 71 205324 (2005) 1-8.

[17] E.N. Bulgakov, A.F. Sadreev, Spin rotation for ballistic electron transmission by spin-orbit interaction Physical Review B 66 075331 (2002) 1-11.

[18] E. Faizabadi, A. Najafi, Energy dependent spin filtering by using Fano effect in open quantum rings, Solid State Communications 150 (2010) 1404-1408.

[19] M. Dey, S.K. Maiti, S.N. Karmakar, Magnetic quantum wire as a spin filter: An exact study, Physics Letter A 374 (2010) 1522-1526.

[20] K.C. Seo, G. Ihm, S.J. Lee, Spin dependent current in a modified Aharonov-Bohm interferometer, Physica E 40 (2008) 2185-2187.

[21] M. Dey, S.K. Maiti, S.N. Karmakar, Logical XOR gate response in a quantum interferometer: A spin dependent transport, Europhysics Journal B 80 (2011) 105-114.

[22] A.A. Kiselev, K.W. Kim, T-shaped ballistic spin filter, Applied Physics Letters78 (2001) 775-777.

[23] I.A. Shelykh, N.G. Galkin, N.T. Bagraev, Quantum splitter controlled by Rashba spin-orbit coupling, Physical Review B 72 235316 (2005) 1-7.

[24] S. Murakami, N. Nagaosa, S.-C. Zhang, Dissipationless Quantum Spin Current at Room Temperature, Science 301 (2003) 1348-1351.

[25] P. Foldi, O. Kalman, M.G. Benedict, F.M. Peeters, Quantum rings as electron spin beam splitters, Physical Review B 73 155325 (2006) 1-5.

[26] W. Gong, Y. Zheng, T. Lu, Tunable pure spin currents in a triple-quantum-dot ring, Applied Physics Letters 92 042104 (2008) 1-3.

[27] L. Eslami, Z. Chaghari, E. Faizabadi, Perfect tuning spin-polarization in a ring-shaped multiple-quantum-dot nanostructure in the presence of Rashba spin-orbit coupling, Physics Letter A 377 (2013) 1459-1463.

[28] Q.F. Sun, J. Wang, H. Guo, Quantum transport theory for nanostructures with Rashbaspin-orbit interaction, Physical Review B 71 165310 (2005) 1-11.

[29] H. Bruus, K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics, Oxford University Press, Oxford (2004).