تحلیل عددی ایجاد میدان دنباله‌ی پالس میکروموج با پروفایل گاوسی در یک موجبر پلاسمایی

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

گروه فیزیک، دانشکده علوم، دانشگاه بیرجند، بیرجند، ایران

چکیده

در این مقاله، انتشار پالس میکروموجی با نمایه گاوسی درون یک موجبر پلاسمایی مستطیلی درحضور یک میدان مغناطیسی یکنواخت خارجی بررسی شده است. برای این منظور، با استفاده از معادلات ماکسول و معادلات هیدرودینامیکی سیال، معادله‌ دیفرانسیلی برای پتانسیل دنباله پالس در موجبر محاسبه شده است. در ادامه با حل این معادله دیفرانسیل با استفاده از روش محاسباتی رانگ-کوتا مرتبه 4، توزیع میدان الکتریکی دنباله پالس (E ⃗_w) در موجبر پلاسمایی با فرض اینکه طول زمانی پالس برابر با دوره زمانی موج پلاسمایی است، شبیه‌سازی شده و تاثیر شدت و فرکانس پالس، عرض موجبر، چگالی الکترونی پلاسما و بزرگی میدان مغناطیسی خارجی بر انتشار پالس در موجبر و ایجاد میدان دنباله (ردپای پالس) بررسی گردیده است. نتایج عددی نشان می‌دهد که میدان دنباله پالس میکروموج، با افزایش شدت پالس، طول زمانی پالس و میدان مغناطیسی خارجی تقویت یافته و با افزایش چگالی پلاسما، فرکانس پالس و عرض موجبر تضعیف می‌شود. بنابراین با بهینه سازی پارامترهای مربوط به پالس گاوسی و موجبر پلاسمایی، ایجاد میدان دنباله پالس قوی به منظور شتابدهی ذرات باردار امکان‌پذیر می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical analysis of wakefield generated by a Gaussian microwave pulse in a plasma waveguide

نویسندگان [English]

  • Reza Fallah
  • Seyed Mohammad Khorashadizadeh
Department of Physics, Faculty of Science, University of Birjand, Brjand, Iran
چکیده [English]

In this paper, the propagation of microwave pulse with Gaussian profile is investigated in the rectangular waveguide filled with plasma in the presence of constant external magnetic field. For this purpose, by using the Maxwell’s equations and the hydrodynamic fluid equations, the differential equation is calculated for the wake potential in the plasma waveguide. In the following, the differential equation is solved by the fourth order Runge-Kutta method, the distribution of the wakefield in the plasma waveguide is simulated by assuming that the pulse duration is equal to the plasma wave duration and the effect of pulse intensity and frequency, waveguide width, plasma density and the magnitude of the external magnetic field are investigated on the pulse propagation in the plasma waveguide and on the wakefield generation. The numerical results show that the microwave wakefield is amplified by increasing the pulse intensity, pulse width and external magnetic field, and decreasing by increasing the plasma density, the pulse frequency and the wavelength. Therefore, by optimizing parameters related to Gaussian pulse and plasma waveguide, creating a strong wakefield can be possible to accelerate the charged particles.

کلیدواژه‌ها [English]

  • Microwave-plasma interaction
  • Wakefield
  • Plasma filled rectangular waveguide
  • Gaussian microwave pulse
  • External magnetic field

 

[1]   T. Tajima, J.M. Dawson, Laser Electron Accelerator, Physical Review Letters 43 (1997) 267.

[2]   M. Litos et al., high-efficiency acceleration of an electron beam in a plasma wakefield accelerator, Nature 515 (2014) 92.

[3]   W.P. Leemans et al., Multi-GeV Electron Beams from Capillary-Discharge-Guided Sub petawatt Laser Pulses in the Self-Trapping Regime, Physical Review Letters 113 (24) (2014) 245002.

[4]   A.J.W. Reitsma, D.A. Jaroszynski, Coupling of longitudinal and transverse motion of accelerated electrons in laser wakefield acceleration, Laser and Particle Beams 22 (2004) 407.

[5]   A.F. Lifschitz, J. Faure, Y. Glinec, V. Malka, P. Mora, Proposed scheme for compact GeV laser plasma accelerator, Laser and Particle Beams 24 (2006) 255-59.

[6]   P.V. Nickles et al., Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute, Laser and Particle Beams 25 (2007) 347.

[7]   X.Y. Wu, P.X. Wang, and S. Kawata, Mechanism of electron acceleration by chirped laser pulse, Applied Physics Letters 100 (2012) 221109.

[8]    A.F. Lifschitz, J. Faure, Y. Glinec, V. Malka, P. Mora, Proposed scheme for compact GeV laser plasma accelerator,  Laser and Particle  Beams 24 (2006) 255.

[9]   E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators, Reviews of Modern Physics 81 (2009) 1229.

[10]L.M. Gorbunov, P. Mora, A.A. Solodov Dynamics of a plasma channel created by the wakefield of a laser pulse,  Physics of  Plasmas 10 (2003) 1124.

[11]R. Fallah, S.M. Khorashadizadeh, Influence of Gaussian, super-Gaussian, and cosine-Gaussian pulse properties on the electron acceleration in a homogeneous plasma, IEEE Transactions on Plasma Science 46 (6) (2018) 2085.

[12]H. K. Malik, S. Kumar, Y. Nishida, Electron acceleration by laser produced wake field: Pulse shape effect, Optics Communications 280 (2007) 417.

[13]R. Fallah, S.M. Khorashadizadeh, Electron acceleration in a homogeneous plasma by Bessel-Gaussian and Gaussian pulses, Contributions to Plasma Physics 58 (9) (2018) 878.   

[14]P. Sprangle et al., Wakefield generation and GeV acceleration in tapered plasma channels, Physical Review E 63 (2001) 56405. 

[15]H.R. Askari, A. Shahidani, Influence of properties of the Gaussian laser pulse and magnetic field on the electron acceleration in laser–plasma interactions, Optics & Laser Technology 45 (2013) 613.

[16]W.P. Leemans et al., GeV electron beams from a centimetre-scale accelerator, Nature physics2 (2006) 696.

[17]H. Schwoerer, Particle acceleration with lasers, South African Journal of Science 104 (2008) 299.

[18]R.J. Kingham, A.R. Bell, Enhanced wakefields for the 1D laser wakefield accelerator, Physical Review Letters 79 (1997) 4810.

[19]N.E. Andreev, M.V. Chegotov, M. E. Veisman, Wakefield generation
by elliptically polarized femtosecond laser pulse in ionizing gases, IEEE Transaction Plasma Science 28 (2000) 1098.

[20]T.B. Zhang, J.L. Hirshfield, T.C. Marshall, B. Hafizi, Stimulated dielectric wake-field accelerator, Physical Review E 56 (1997) 4647.

[21]S.Y. Park, J.L. Hirshfield, Theory of wakefields in a dielectric-lined waveguide, Physical Review E 62 (1997) 1266.

[22]Y. Nishida, T. Shinozaki, Resonant wave-particle interactions in  acceleration scheme, Physical Review Letters 65 (1990) 2386.

[23]Y. Nishida, T. Okazaki, N. Yugami, T. Nagasawa, Excitation of large-amplitude ion-wave wake fields, Physical Review Letters 66 (1991) 2328.

[24] Y. Nishida, S. Kusaka, N.Yugami Excitation of wakefield and electron acceleration by short microwave pulse, Physica Scripta 52 (1994) 65.

[25]S.K. Jawla, Kumar S, H.K. Malik, Evaluation of mode fields in a magnetized plasma waveguide and electron acceleration, Optics Communications 251 (2005) 346.

[26]H.K. Malik, Application of obliquely interfering TE10 modes for
electron energy gain, Optics Communications 278 (2007) 387.

[27]H.K. Malik, Analytical calculation of wake field generated by microwave pulses in plasma filled waveguide for electron acceleration, Journal of applied physics 104 (2008) 053308.