ساخت نانومیله‌های هسته/پوسته ZnO/ZnS به روش آبی- حرارتی و بررسی خواص ساختاری و نوری آنها

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 دانشگاه شهید چمران اهواز

2 گروه فیزیک، دانشگاه شهید چمران اهواز

3 عضو هیات علمی گروه فیزیک

چکیده

در این تحقیق، ساخت نانومیله‌های ‏ZnO‏ و نانومیله‌های هسته/پوستة ‏ZnO/ZnS‏ ‏گزارش شده است. نانوساختارهای حاصل توسط روش‌های مختلفی شامل : پراش ‏پرتوی ایکس (‏XRD‏)، میکروسکوپ الکترونی روبشی (‏SEM‏)، میکروسکوپ الکترونی ‏روبشی گسیل میدانی (‏FESEM‏)، طیف‌سنج فرابنفش- مرئی (‏UV-Visible‏) و طیف‌سنج ‏فوتولومینسانسی (‏PL‏) مورد مطالعه و مشخصه‌یابی قرار گرفتند. نتایج حاصل ‏از‎ ‎الگو‌های ‏XRD‏ برای نانومیله‌های اکسید روی ساختار بلوری ورتسایت شش‌وجهی ‏و برای نانوذرات ‏ZnS‏ رشد یافته روی نانومیله‌های ‏ZnO‏ ساختار بلوری ‌بلندروی ‏مکعبی را به‌وضوح نشان می‌دهد. مطالعة ریخت‌شناسی این ساختارها توسط ‏SEM‏ و ‏FESEM‏ قطر را برای نانومیله‌های اکسید روی، نانوذرات ‏ZnS‏ و نانومیله‌های ‏هسته/پوستة ‏ZnO/ZnS‏ به‌ترتیب 70، 20 و 120 نانومتر نشان می‌دهد. طیف جذبی ‏نانومیله‌های ‏ZnO/ZnS‏ در مقایسه با نانومیله‌های ‏ZnO‏ و نانوذرات ‏ZnS‏ به-‏وضوح یک جابجایی به‌ سمت طول‌موج‌های بلندتر را برای ساختار هسته/پوسته ‏نشان می‌دهد. همانطور که پیش‌بینی شده است، این جابجایی ناشی از کاهش گاف ‏نواری مؤثر ساختار هسته/پوسته می‌باشد. مطالعات طیف ‏PL‏ نانوساختارها نشان ‏داد که پوشش‌دهی نانومیله‌های اکسید روی توسط ‏ZnS‏ باعث کاهش برخی نواقص ‏ساختاری و درنتیجه کاهش تابش مرئی حاصل از آن نقص می‌شود.‏

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fabrication of core-shell ZnO/ZnS nanorods by hydrothermal method and study of their structural and optical properties

نویسندگان [English]

  • Hadis Goudarzi 2
  • Zahra Seidali lir 3
2 Department of physics, Shahid chamran university of ahvaz
3 physics
چکیده [English]

In This paper, the production of ZnO nanorods and ZnO/ZnS core/Shell nanorods are reported. The fabricated nanostructures are characterized and studied using different methods including; X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Field Emission Scanning Microscopy (FESM), UV-Visible (UV-Vis) and Photoluminescence (PL) spectroscopy. Results of XRD spectrums clearly show a hexagonal Wurtzite crystal structure for ZnO nanorods and for grown-coated ZnS nanoparticles on ZnO nanorods a cubic Zinc blende crystal structures. The morphology studies of these structures by SEM and FESM have shown the diameters of ZnO nanorods, ZnS nanoparticles, and core/Shell ZnO/ZnS nanorods to be 70, 20 and 120 nanometers, respectively. The absorption spectra of ZnO/ZnS core/Shell compared to ZnO and ZnS structures have clearly shown a shift of absorption band of core/shell structure towards longer wavelengths. This is due to a reduction of efficient band gaps of core/shell structures, as predicted. Results of PL studies have also shown that the coating of zinc oxide nanorods by ZnS nanoparticles decreases some of the structural defects and, consequently, reduces the visible radiation resulting from the structural defect.

کلیدواژه‌ها [English]

  • ZnO Nanorods
  • Core/Shell ZnO/ZnS Nanorods
  • Hydrothermal Method
  • Thermal Decomposition Method
  • Surface Defects
[1] P.V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, R.E. Kroon, O.M. Ntwaeaborwa, Luminescent, magnetic and optical properties of ZnO-ZnS nanocomposites, Physica B: Condensed Matter 507 (2017) 13-20.

[2] R. Mastria, A. Rizzo, Mastering heterostructured colloidal nanocrystal properties for light-emitting diodes and solar cells, Journal of Materials Chemistry C 4 27 (2016) 6430-6446.

[3] P. Reiss, M. Protiere, L. Li, Core/Shell Semiconductor Nanocrystals, Small 5 2 (2009) 154-168.

[4] S. Baruah, J. Dutta, Hydrothermal Growth of ZnO Nanostructures, Science and Technology of Advanced Materials 10 1 (2009) 013001.

[5] J. Arbiol, Q. Xiong, Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications, Elsevier, (2015).

[6] R.S. Zeferino, J.A. Ramos Ramon, M.E. de Anda Reyes, R. Silva González, U. Pal, Large Scale Synthesis of ZnO Nanostructures of Different Morphologies through Solvent-free Mechanochemical Synthesis and their Application in Photocatalytic Dye Degradation, American Journal of Engineering and Applied Sciences 9 1(2016) 41-52.

[7] Z.L. Wang, Piezoelectric nanostructures: From growth phenomena to electric nanogenerators, Mrs Bulletin 32 2 (2007) 109-116.

 

[8] J. Li, D. Zhao, X. Meng, Z. Zhang, J. Zhang, D. Shen, Y. Lu, X. Fan, Enhanced Ultraviolet Emission from ZnS-Coated ZnO Nanowires Fabricated by Self-Assembling Method, The Journal of Physical Chemistry B 110 30 (2006) 14685-14687.

 

[9] F. Li, Y. Jiang, L. Hu, L. Liu, Z. Li, X. Huang, Structural and Luminescent Properties of ZnO Nanorods and ZnO/ZnS Nanocomposites, Journal of Alloys and Compounds 474 1 (2009) 531-535.

 

[10] X. Huang, M. Wang, M.G. Willinger, L. Shao, D.S. Su, X.M. Meng, Assembly of Three-Dimensional Hetero-Epitaxial ZnO/ZnS Core/Shell Nanorod and Single Crystalline Hollow ZnS Nanotube Arrays, ACS Nano 6 8 (2012) 7333-7339.

 

[11] X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS Nanostructures: from Synthesis to Applications, Progress in Materials Science 56 2 (2011) 175-287.

 

[12] Y. Wang, Q. Guo, S. Lin, B. Chen, D. Zheng, Growth and Properties of ZnO/ZnS Core/Shell Nanostructures, Journal of Physics: Conference Series 152 1 (2009) 012018.

 

[13] X. Gao, J. Wang, J. Yu, H. Xu, Novel ZnO–ZnS Nanowire Arrays with Heterostructures and Enhanced Photocatalytic Properties, CrystEngComm 17 33 (2015) 6328-6337.

 

[14] C.C. Lin Y.Y. Li, Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate, Materials Chemistry and Physics 113 1 (2014) 334-337.

 

]15[ M. Farbod, E. Jafarpoor, Hydrothermal synthesis of different colors and morphologies of ZnO nanostructures and comparison of their photocatalytic properties, Ceramics International 40 5 (2014) 6605-6610.

 

[16] R. Yi, G. Qiu, X. Liu, Rational Synthetic Strategy: From ZnO Nanorods to ZnS Nanotubes, Journal of Solid State Chemistry 182 10 (2009) 2791-2795.

 

[17] B. Li, Y. Wang, Facile Synthesis and Enhanced Photocatalytic Performance of Flower-like ZnO Hierarchical Microstructures, The Journal of Physical Chemistry C 114 2 (2010) 890-896.

]18[ M. Janbazi, Production of electrospun ZnO yarns from aligned nanofibers and study of their optical and structural properties, MSc Thesis, Shahid Chamran University Of Ahvaz (2016).

]19[ M.M. Khan, M.W. Khan, M. Alhoshan, M.S. AlSalhi, A.S. Aldwayyan, Influences of Co doping on the structural and optical properties of ZnO nanostructured, Applied Physics A 100 1 (2010) 45-51.‏

]20[ J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, physica status solidi b 15 2 (1966) 627-637.‏

]21[ M. Mohammadian-Kohol, M. Asgari, H.R. Shakur, A detailed investigation of the gamma-ray radiation effects on the optical properties of polyvinyl butyral film, Optik-International Journal for Light and Electron Optics 127 19 (2016) 7459-7468.‏

[22] Y. Li, B.-P. Zhang, J.X. Zhao, Z.H. Ge, X.K. Zhao, L. Zou, ZnO/Carbon Quantum Dots Heterostructure with Enhanced Photocatalytic Properties, Applied Surface Science 279 (2013) 367-373.

[23] R. Amiruddin, M.S. Kumar, Enhanced Visible Emission from Vertically Aligned ZnO Nanostructures by Aqueous Chemical Growth Process, Journal of Luminescence 155 (2014) 149-155.

[24] Y. Leung, C. Chan, A. Ng, H. Chan, M. Chiang, A. Djurisic, Y. Ng, W. Jim, M. Guo, F. Leung, Antibacterial Activity of ZnO Nanoparticles with a Modified Surface under Ambient Illumination, Nanotechnology 23 47 (2012) 475703.

 [25] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. J. Choi, Controlled Growth of ZnO Nanowires and their Optical Properties, Advanced Functional Materials 12 5 (2002) 323.

[26] X. Wang, J. Shi, Z. Feng, M. Li, C. Li, Visible Emission Characteristics from Different Defects of ZnS Nanocrystals, Physical Chemistry Chemical Physics 13 10 (2011) 4715-4723.

[27] L. Wang, X. Huang, J. Xia, D. Zhu, X. Li, X. Meng, Three Dimensional ZnO Nanotube Arrays and their Optical Tuning through Formation of Type-II Heterostructures, CrystEngComm 18 14 (2016) 2517-2523.

[28] X. Shuai W. Shen, A facile chemical conversion synthesis of ZnO/ZnS core/shell nanorods and diverse metal sulfide nanotubes, The Journal of Physical Chemistry C 115 14 (2011) 6415-6422.