اثر جذب سطحی نانو لایه h-BN روی خواص ساختاری و الکترونی تک لایه WS2 با استفاده از اصول اولیه

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 عضو هیأت علمی گروه فیزیک، دانشکده علوم، دانشگاه یاسوج، یاسوج، ایران

2 دانشگاه یاسوج ، یاسوج ،ایران

3 عضو هیات علمی گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران، اهواز، ایران

4 عضو هیات علمی

چکیده

جذب تک لایه h-BN بر روی نانولایه WS2 در چارچوب نظریه تابع چگالی و با استفاده از کد محاسباتی کوانتوم اسپرسو بررسی شده است. محاسبات با تابع های تبادلی-همبستگی شامل LDA،GGA و با استفاده از دو رهیافت نیمه‌تجربی و ابتدا به ساکن با به کارگیری تابع‌های DFT-D2، vdW-DF2و vdW-DF2B86R صورت گرفته تا کارایی تابع‌های مختلف برای پیش‌بینی انرژی جذب، مکانیسم جذب و فاصله جذب بین دو لایه h-BN و WS2 بررسی شوند. به منظور اعمال برهم‌کنش واندروالس تصصیح نیروی پراکندگی دور برد در دو رهیافت نیمه‌تجربی و ابتدا به ساکن بررسی شده است و به نظر می‌رسد که تقریب vdW-DF2B86R مناسب‌ترین تابع باشد. هر دو رهیافت ابتدا به ساکن و نیمه‌تجربی جذب فیزیکی بدون انتقال بار خالص بین دو صفحه h-BN و WS2 را پیش‌بینی می‌کنند. همچنین خواص الکترونی، ساختاری و چگالی حالت‌ها برای ترکیب نامتجانس WS2/h-BN بررسی شده است. نتایج نشان می‌دهد که سامانۀ مرکب ساختاری با گاف مستقیم در نقطه K دارد که از نقطه نظر تجربی نیز مورد تایید می‌باشد

کلیدواژه‌ها


عنوان مقاله [English]

Effect of adsorption h-BN nano layer on the electronic and structural properties of WS2 monolayer by using first-principles study

نویسندگان [English]

  • Seyed Fardin Taghizadeh 1
  • zahra ghasemi majd 2
  • peyman amiri 3
  • behroz vaseghi 4
1 Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353, Iran
2 Yasuj university, Yasuj, Iran
3 Department of Physics, college of sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

The adsorption of h-BN monolayer on WS2 nano sheet was studied in the framework of density functional theory using Quantum ESPRESSO package. First-principle calculations with different exchange-correlation functionals including LDA, GGA, semi-empirical and ab-initio van der Waals in the forms of DFT-D2, vdW-DF2B86R and vdW-DF2 have been performed to evaluate the performance of different functionals in describing bonding mechanism, adsorption energy and interlayer distance of WS2 monolayer on h-BN layer. In order to include the van der Waals (vdW) interactions in our calculations, we used the DFT-D2 and vdW methods and found the vdW-DF2B86R seems to be the most qualified approach. Both vdW and semi-empirical methods predict a physical adsorption with no net charge transfer between the WS2 layer and the corresponding substrates. In addition, we investigated the electronic and structural properties and density of states of WS2 and h-BN heterolayers by vdW-DF2B86R functional. Based on our calculations, WS2/h-BN heterostructure show a direct band gap at the K-point, which has been experimentally observed.

کلیدواژه‌ها [English]

  • adsorption
  • Boron nitride
  • Electronic structure
  • First-principle calculations
  • Tungsten disulfide
  • van der Waals interaction
[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon bfilms, Science 306 (2004) 666-669.

 

[2] D. Pacile, J.C. Meyer, C.O. Girit, A. Zettl, The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes, Applied Physics Letters 92 (2008) 133107-133110.

 

[3] C.T. Pan, R.R. Nair, U. Bangert, Q. Ramasse, R. Jalil, R. Zan, C.R. Seabourne, A.J. Scott, Nanoscale electron diffraction and plasmon spectroscopy of single- and few-layer boron nitride, Physical Review B:Condens. Matter 85 (2012) 045440-045447.

 

[4] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology 7 (2012) 699-712.

 

[5] Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H.Y. Hwang, Y. Cui, Z. Liu, Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary, ACS Nano 7 (2013) 8963-8971.

 

[6] H.P. Komsa, A.V. Krasheninnikov, Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles, Physical Review B: Condensed. Matter, 88 (2013) 085318-085325.

 

[7] L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Letters, 10 (2010) 3209-3215.

 

[8] Z. Fan, Z. Wei-Bing, T. Bi-Yu, Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides, Chinese Physics B, 24 (2015) 097103-097111.

 

[9] R. Roldán, J.A. Silva-Guillén, M.P. López-Sancho, F. Guinea, E. Cappelluti, P. Ordejón, Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M=Mo, W and X=S, Se, Annals of Physics (Berlin) 526 (2014) 347-357.

 

[10] H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers, Nano Letters, 13 (2013) 3447-3454.

 

[11] H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides, cond-mat.mes-hall, 3 (2012).

 

[12] A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S. van der Zant, N. Agraït, G. Rubio-Bollinger, Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2, Nanoscale Research Letters, 7 (2012) 4013-4017.

 

[13] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor, Physical Review Letters, 105 (2010) 4.

 

[14] M.W. Iqbal, M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo, J.H. Park, C. Hwang, J. Eom, High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films, Scientific Reports, 5 (2015) 10699-10708.

 

[15] N. Lu, H. Guo, L. Wang, X. Wu, X.C. Zeng., Van der Waals trilayers and superlattices:modification of electronic structures of MoS2 by intercalation, Nanoscale 6(2014) 4566-4572.

 

[16] F. Withers, T.H. Bointon, D.C. Hudson, M.F. Craciun, S. Russo, Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment, Scientific Reports, 4 (2014) 4967-4972.

 

[17] J. Zhou, Q. Wang, Q. Sun, P. Jena, Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine, Physical Review B, 81 (2010) 085442-085450.

 

[18] A. Zhang, H.F. Teoh, Z. Dai, Y.P. Feng, C. Zhang, Band gap engineering in graphene and hexagonal BN antidot lattices: A first principles Study, Applied Physics Letters, 98 (2011) 023105-023112.

 

[19] Z. Huang, C. He, X. Qi, H. Yang, W. Liu, X. Wei, X. Peng, J. Zhong, Band Structure Engineering of Monolayer MoS2 on h-BN: First-Principles Calculations, Journal of Physics D: Applied Physics, 47 (2014) 075301-075307.

 

[20] A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics, 81 (2009) 109-161.

 

[21] L. Boldrin, F. Scarpa, R. Chowdhury, S. Adhikari, Effective mechanical properties of hexagonal boron nitride nanosheets, Nanotechnology, 22 (2011) 505702-505707.

 

[22] D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets, ACS nano, 4 (2010) 2979-2993.

 

[23] K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices, ACS Nano, 6 (2012) 8583-8590.

 

[24] S. Xiufeng, H. Jinlian, Z. Haibo, Two-dimensional semiconductors: recent progress and future perspectives, Journal of Materials Chemistry C, 1 (2013) 2952-2969.

 

[25] V.O. Özçelik, S. Ciraci, Nanoscale Dielectric Capacitors Composed of Graphene and Boron Nitride Layers: A First-Principles Study of High Capacitance at Nanoscale, Journal of Physical Chemistry C , 117 (2013) 15327-15334.

 

[26] T. Roy, M. Tosun, J.S. Kang, A.B. Sachid, S.B. Desai, M. Hettick, C.C. Hu, A. Javey, Field-effect transistors built from all two-dimensional material components, ACS Nano, 8 (2014) 6259-6264.

 

[27] A. Rossi, H. Büch, C.D. Rienzo, V. Miseikis, D. Convertino, A. Al-Temimy, V. Voliani, M. Gemmi, V. Piazza, C. Coletti, Scalable synthesis of WS2 on graphene and h-BN: an all-2D platform for light-matter transduction, 2D Materials, 3 (2016) 031013-031018.

 

[28] P. Giannozzi, S. Baroni , N. Boninin, M. Calandra, R. Car , C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S.d. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, 21 (2009) 395502-395521.

 

[29] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry, 27 (2006) 1787-1799.

 

[30] I. Hamada, van der Waals density functional made accurate Physical Review B, 89 (2014) 121103-121108.

 

[31] K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Higher-accuracy van der Waals density functional, Physical Review B, 82 (2010) 081101-081109.

 

[32] H. Salehi, M. Moaddeli, P. Amiri, Noble metal chain adsorption on graphene sheet, Surface Science, 647 (2016) 96–102.

 

[33] I.N. Yakovkin, Dirac Cones in Graphene, Interlayer Interaction in Layered Materials, and the Band Gap in MoS2, Crystals, 6 (2016) 143-156.

 

[34] S. GRIMME, Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections, Journal of Computational Chemistry, 25 (2004) 1463-1473.

 

[35] M. Dion, H. Rydberg, E. Schröder, D.C. Langreth , B.I. Lundqvist, Van der Waals Density Functional for General Geometries, Physical Review B, 92 (2004) 246401-246405.

 

[36] Y. Cai, G. Zhang, Y.W. Zhang, The Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Heterostructures, Journal of Physical Chemistry C, 119 (2015) 13929-13936.

 

[37] Y. Kobayashi, S. Sasaki, S. Mori, H. Hibino, Z. Liu, K. Watanabe, T. Taniguchi, K. Suenaga, Y. Maniwa, Y. Miyata, Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite, ACS Nano, 9 (2015) 4056-4063.

 

[38] M. Okada, Y. Miyauchi, K. Matsuda, T. Taniguchi, K. Watanabe, H. Shinohara, R. Kitaura, Observation of biexcitonic emission at extremely low power density in tungsten disulfide atomic layers grown on hexagonal boron nitride, Science Report, 7 (2017) 322-329.

 

[39] J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Band offsets and heterostructures of two-dimensional semiconductors, Applied Physics Letters, 102 (2013) 012111-012115.

 

[40] K. Ko´smider, J. Fern´andez-Rossier, Electronic properties of the MoS2-WS2 heterojunction, Physical Review B, 87 (2013) 075451-075455.

 

[41] R.K. Ghosh, S. Mahapatra, Monolayer Transition Metal Dichalcogenide Channel-Based Tunnel Transistor, IEEE J. Electron Devices Society 1(2013) 175-180.

 

[42] CassaboisG, ValvinP, GilB, Hexagonal boron nitride is an indirect bandgap semiconductor, Nature Photonics, 10 (2016) 262-266