شبیه سازی رشد تک بلور BGO بوسیله روش ارتقاء یافته چُکرالسکی با گرادیان دمای پایین

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 دانشگاه بو علی سینا همدان

2 دانشگاه بو علی سینا

3 دانشگاه مالک اشتر

چکیده

در این مقاله میدان دما و جریان شاره در طی مراحل مختلف رشد تک بلور BGO به روش چُکرالسکی با گرادیان دمای پایین و استفاده از سیستم گرمایش مقاومتی شبیه سازی و کیفیت بلور رشد یافته با استفاده از تنش گرمایی ایجاد شده در آن، در ارتفاع های مختلف بررسی شده است. پیکربندی سامانه رشد استفاده شده در سیستم مورد مطالعه مطابق یا یک سیستم واقعی در آزمایشگاه و شامل یک لوله سرامیکی استوانه ای، محافظ گرمایی و سه منطقه گرمایی المنتی با شعاع های مختلف به منظور تولید و کنترل گرادیان دمای پایین می باشد. انتقال حرارت تابشی سطح به سطح و نیز تابش داخلی در سیستم رشد در نظر گرفته شده است. نتایج شبیه سازی و انطباق آن با داده های تجربی نشان می دهد که گرادیان دمای پایین و پیکربندی خاص سیستم منجر به بهینه شدن فصل مشترک بلور- مذاب، کاهش تنش های گرمایی و بهبود کیفیت بلور رشد یافته می گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

simulation of BGO single crystal growth by improved low thermal gradient (LTG) Czochralski

نویسندگان [English]

  • shirin omid 1
  • Mohammad Hosein Tavakoli 2
  • Kheirollah Mohammadi 3
1 buali sina hamedan
2 Buali Sina univercity
3 malek ashtar univercity
چکیده [English]

]In this paper has been simulated the temperature field and flows during different stages of low thermal gradient (LTG) Czochralski single crystal growth and using the resistive heating system has been simulated and the quality of grown crystal has been investigated using the thermal stress at the different heights has been investigated. The configuration of the used growth furnace in this system is in accordance with a real system in the lab and is consists of a cylindrical ceramic tube, a heat shield and three element heat zones with different radius to generate and control the low temperature gradient. The surface to surface and internal radiation heat transfer has been considered in system. The results of simulation and its adaptation to experimental data show that the low temperature gradient and specific configuration of the system leads to optimization of the crystal-melt interface, the reduction of thermal stresses and the improvement of the quality of the crystal grown.

کلیدواژه‌ها [English]

  • Computer simulation
  • heat transfer
  • Fluid flows
  • Czochralski method
  • Single crystal
 

[1] A.V. Kolesnikov, E.P. Galenin, O.Ts. Sidletskiy, V.V. Kalaev, Optimization of heating conditions during Cz BGO crystal growth, Journal of Crystal Growth 407 (2014) 43-47.

 

[2] H. Khodamoradi, M.H. Tavakoli, K. Mohammadi, Influence of crucible and coil geometry on the induction heating processin Czochralski crystal growth system, Journal of Crystal Growth 66 (2015) 421-429.

 

[3] Yu.A. Borovlev, N.V. Ivannikova, V.N. Shlegel, Ya.V. Vasiliev, V.A. Gusev, Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique, Journal of Crystal Growth 229 (2001) 305-311.

 

[4] R.V. Murthy, M. Ravikumar, A. Choubey, KrishanLal, Lyudmila Kharachenko, V. Shleguel, V. Guerasimov, Growth and characterization of large-size bismuth germinate single crystals by low thermal gradient Czochralski method, Journal of Crystal Growth 197 (1999) 865-873.

 

[5] V.M. Mamedov, M.G. Vasiliev, V.S. Yuferev, D.Pantsurkin, V.N. Shlegel, Ya. V. Vasiliev, Control of multi-zone resistive heater in low temperature gradient BGO Czochralski growth with a weighing feedback, based on the global dynamic heat transfer model, Journal of Crystal Growth 312 (2010) 2814-2822.

 

[6] V.S. Yuferev, O.N. Budenkova, M.G. Vasiliev, S.A. Rukolaine, V.N. Shlegel, Ya.V. Vasiliev, A.I. Zhmakin, Variations of solid–liquid interface in the BGO low thermal gradients Cz growth for diffuse and specular crystal side surface, Journal of Crystal Growth 253 (2003) 383-397.

 

[7] I.Yu. Evstratov, S. Rukolaine, V.S. Yuferev, M.G. Vasiliev, A.B. Fogelson, V.M. Mamedov, V.N. Shlegel, Ya. V. Vasiliev, Yu.N. Makarov, Global analysis of heat transfer in growing BGO crystals (Bi4Ge3O12) by low-gradient Czochralski method, Journal of Crystal Growth 235 (2002) 371-376.

 

[8] V.M. Skorikov, Yu.F. Kargin, A.V. Egorysheva, V. V. Volkov, and M.M. Gospodinov, Growth of Sillenite-Structure Single Crystals, Inorganic Materials 41 (2005) 24-46.

 

[9] S.V. Bykova, V.D. Golyshev, M.A. Gonik, V.B. Tsvetovsky, V.I. Deshko, A.Ya. Karvatskii, A.V. Lenkin, S. Brandon, O. Weinstein, A. Virozub, J.J. Derby, A. Yeckel, P. Sonda, Experimental and numerical analysis of coupled interfacial kinetics and heat transport during the axial heat flux close to the phase interface growth of BGO single crystals, Journal of Crystal Growth 266 (2004) 246-256.

 

[10] O.N. Budenkova, M.G. Vasiliev, V.N. Shlegel, N.V. Ivannikova, R.I. Bragin, V.V. Kalaev, Comparative Analysis of the Heat Transfer Processes during Growth of Bi12GeO20 and Bi4Ge3O12 Crystals by the Low-Thermal-Gradient Czochralski Technique, Journal of Crystal Growth 50 (2005) 100-105.

 

[11] K. Mazaev, V. Kalaev, E. Galenin, S. Tkachenko, O. Sidletskiy, Heat transfer and convection in Czochralski growth of large BGO Crystals, Journal of Crystal Growth 311 (2009) 3933-3937.

 

[12] J.H. Wang, D.H. Kim, J.S. Huh, Modelling of crystal growth process in heat exchanger method, Journal of Crystal Growth 174 (1997) 13-17.

 

[13] O.N. Budenkovaa, M.G. Vasilieva, V.S. Yufereva, E.N. Bystrovab, V.V. Kalaevb, V. Bermudezc, E. Dieguezc, Yu.N. Makarov, Simulation of global heat transfer in the Czochralski process for BGO sillenite crystals Journal of Crystal Growth 266 (2004) 103-108.

 

[14] J.H. Wang, D.H. Kim, D.S. Chung, Analysis of moving boundrary problem of growth of bismuteh germinate crystal by heat The Chemical Engineering Journal 13 (1996) 503-509.,

 

[15] R.B. Hetnarski, M.R. Eslami, Thermal Stresses–Advanced Theory and Applications, Springer, (2009).

[16] M.H. Tavakoli, H. Wilke, Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 1: non-rotating seed Crystal and Research Technology 42 (2007) 544-557.

 

[17] V.D. Golyshev, M.A. Gonik, Heat transfer in growing Bi4Ge3O12 crystals under weak convection: II-radiative–conductive heat transfer, Journal of Crystal Growth 262 (2004) 212-224.

 

 

[19] M.H. Tavakoli, E. Mohammadi-Manesh and S. Omid, Simulation of temperature and flow fields in an inductively heated melt growth system, Crystal Research and Technology 45 (2010) 1117-1122.

 

[20] M.H. Tavakoli, S. Omid, E. Mohammadi-Manesh, Influence of active afterheater on the fluid dynamics and heat transfer during Czochralski growth of oxide single crystals, CrystEngComm 13 (2011) 5088-5093.