بررسی اثر اضافه کردن کاتیون ترکیبی روبیدیم-سزیم روی عملکرد سلول خورشیدی پروسکایتی هالید و کاتیون ترکیبی MAFAPb(IBr)3

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 دانشگاه فردوسی مشهد، ایران

2 دانشگاه فردوسی، مشهد، ایران

3 دانشگاه یزد، یزد، ایران

چکیده

در این تحقیق، کاتیون ترکیبی روبیدیم-سزیم (2(RbCsI به محلول اصلی پروسکایت با ساختارMA0.17FA0.83Pb(I0.83Br0.17)3 تزریق گردید. در ساختار اصلی این سلول، هم کاتیون های MA و FA و هم آنیون های برم (Br) و ید (I) که هالید ساختار هستند، وجود دارند. نسبت روبیدیم و سزیم برابر هم انتخاب شد و نسبت محلول یدید روبیدیم-سزیم برابر 5 % کل محلول اصلی پروسکایت در نظر گرفته شد. برای مقایسه سلولی دیگر به عنوان سلول شاهد ساخته شد که در آن فقط کاتیون سزیم (CsI) به محلول اصلی پروسکایت با ساختار فوق الذکر تزریق شد. در ادامه سلول حاوی کاتیون روبیدیم-سزیم با سلول شاهد با توجه به نتایج تست های I-V، XRD و SEM مقایسه و بررسی گردید. نتایج نشان دادند که بازده سلول حاوی کاتیون روبیدیم-سزیم4/0 درصد بیشتر از بازده سلول شاهد می باشند. علاوه براین پیک های پروسکایت در سلول حاوی کاتیون روبیدیم-سزیم شدت بیشتری نسبت به سلول شاهد دارد که نشان دهنده بلورینگی و خلوص بیشتر پروسکایت حاوی کاتیون روبیدیم-سزیم است. همچنین تصاویر SEM نشان میدهند که حفره ها در پروسکایت حاوی کاتیون روبیدیم-سزیم کمتر از سلول شاهد می باشد. بنابراین سلول خورشیدی پروسکایتی حاوی کاتیون روبیدیم-سزیم نسبت به سلول شاهد بهبود یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of inserting combined Rubidium- Cesium cation on performance of perovkite solar cell FAMAPb(IBr)3

نویسندگان [English]

  • Mohammad Jafar Namvar 1
  • Mohammad Hosien Abbaspour-Fard 2
  • Mahmood Rezaei Roknabadi 2
  • Abbas Behjat 3
  • Masod Mirzaei 2
1 Ferdowsi University of Mashhad, Mashhad, Iran
2 Ferdowsi University of Mashhad, Mashhad, Iran
3 Yazd University, Yazd, Iran
چکیده [English]

In this work, a combined cation of Cesium and Rubidium (RbCsI2) was injected to the main Perovskite solution. The main formulation of the cells was MA0.17FA0.83Pb (I0.83Br0.17)3, hence it contains“ MA” and “FA” cations and also “Br” and “I” anions, which are Halide. The Cesium-Rubidium iodide (RbCsI2) was added to the main solution of Perovskite, while in the control sample only cesium iodide (CsI) was added to the main solution. The two types of fabricated cells were compared according to the current-voltage characteristic (I-V), SEM and XRD tests. Regarding the current-voltage measurements, it was found that the cell efficiency of the cation containing Rubidium-Cesium is higher (0.4 percent) than that of the cell containing just Cesium. SEM images also showed that samples containing Rubidium-Cesium cation have fewer pinholes than Cesium cation on their surface layer. This lead to higher charge transfer and lower trapping of charge carriers, which ultimately increases the cell efficiency. The XRD patterns also show that the precipitate crystallization of the cation containing Rubidium-Cesium is higher than that of cesium cation, which also results in higher transfer rates and thus higher efficiency.

کلیدواژه‌ها [English]

  • Perovskite solar cells
  • mixedcations
  • Crystallinity
  • pinhole
  • Efficiency

 [1] N. Memariyani, M. Omrani, M. Minbashi, Efficiency improvement of solar cell of heterogeneous silicone with gallium intrinsic layer, Journal of research of particle systems, 14 (2017) 103-112.

[2] I. Firozi, I. Mohammadi, Designing of nanoplasmonic solar cells based on excitation optical mods of inside the cell, Journal of research of particle systems ,15 (2017) 89-102.

[3] S. D. Stranks, G. E. Eperon, G. Grancini,  C. Menelaou, M. J. P. Alcocer, T. Leijtens , L. M. Herz,  A. Petrozza, H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science342 (2013) 342-341.

[4] H. Oga, A.Saeki, Y. Ogomi, S. Hayase, S. Seki, Improved  understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps, J Am  Chem, Soc, 136 (2014) 13818-13825.

 [5] J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature Mater9 (2014) 897-903.

[6] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light                       Sensitizers for photovoltaic cells, J Am Chem Soc, 131 (2009)  6050–6051.

[7] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, 6.5% Efficient Perovskite Quantum-     Dot-Sensitized Solar Cell, Nanoscale3 (2011) 4088-4093.

[8] H. S. Kim, C. R. Lee, J. H. Im, T. Moehl, A. Marchioro, S. J. Moon, R. B. Humphry, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci Rep2 (2012) 591-596.

[9] National Renewable Energy Laboratory, Best Research-Cell Efficiencies chart: www.nrel.gov/ncpv/images/efficiency_chart.jpg.

[10] N. J. Jeon, J. H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J.  Seo, S. L. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature517 (2015) 476–480.

[11] M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J. P.  Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K. H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel,  A molecularly engineered hole-transporting material for efficient perovskite solar cells, Nature Energy,15017 (2016) 1.doi.org /10.1038/nenergy.2015.17

 

[12] X. Li, D. Bi, C. Yi, J. D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells, Science,353 (2016) 58–62 .

 

[13] H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim, G. Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells, Nano Energy,7 (2014) 80–85.

[14] J.W. Lee, D. H. Kim, H. S. Kim, S. W.  Seo, S. M. Cho, N. G. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell, AdV  Energy Mater,5 (2015) 1310.

[15] C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger, M. Grätzel, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells,  Energy Environ, Science, 9 (2016) 656–662. 

[16] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry ,K. Zhu,  Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys, Chem Mater,28 (2016) 284–292. 

[17] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin,  S. M. Zakeeruddin, W. Tress, A.  Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency, Energy Environ,Science9 (2016) 1989–1997.

[18]F. Hao, C. C. Stoumpos, D. H. Cao,R. P. H. Chang, M. G. Kanatzidis, Perovskite photonic sources, Nat Photonics8 ( 2014) 489-494.

 [19] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electro-optics of perovskite solar cells, Science342 ( 2013) 341-344.

[20] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-Hole Diffusion Lengths, Science347 (2015) 967-970.

[21] N.J. Jeon, J. Noh, W.S. Yang, Y.C. Kim, J. Soe, Compositional engineering of perovskite materials for high-performance solar cellsNature517 (2015) 476–480.

[22] J.W.  Lee, J. Brabec, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell, Adv Energy Mater5 (2015) 1501310.

 [23] M. Kulbak, D. Cahen, J. Hodes, How important is the organic part of lead halides, J Phys Chem Lett6 (2015) 2452-2456.

 

[24] C.K. Moller, Lead Halide Perovskite Nanocreystal in the Research, Nature182 (1958)1436-1436.

[25] Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang, A. P. Alivisatos,  Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowire,  J Am Chem Soc137 (2015) 16008-16011.

[26] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. L. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature517 (2015)  476-480.

[27] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. L. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature Material,  13 (2015) 897-903.

[28] H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim, J. Y. Kim, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells, Nano Energy7 (2014) 80-85.

[29] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys, Chemistry of Materials28 (2016 ) 284-292.

                                                                                                        

[30] V. M. Goldschmidt, Goldshmidt tolerance factor, Die Nature wissenschaften14 (1926)477-485.

[31] H. L. Wells, S. Schunemann, S. Brittman, K. Chen, Z. Anorg, Halide Perovskite 3D Photonic Crystals for Distributed Feedback Lasers, Chem4 (2017) 2522-2528.

[32]D. B. Mitzi, K. Liang, Synthesis resistivity and thermal properties of the cubic perovskite NH2CH=NH2SnI3 and related systems, J Solid State Chem134 (1997) 376–381.

 

[33] G. Kieslich, S. J. Sun, A.K. Cheetham, Solid-state principles applied to organic-inorganic perovskites: New tricks for an old dog, Chem Science, 5 (2014) 4712–4715.

 

[34]F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nature Photonics,8 (2014)  489–494.

 

[35] M. Saliba, T. Matsui, K. Domanski, J. I. YouanSeo, A. Ummadisingu, M. Gratzel, Incorporation of  Rubidium Cation Perovskite Solar Cells Improves Photovoltaic Performance, Science354 (2016) 206-209.

 [36] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of  Formamidinium and Cesium Lead Iodide Solid-State Alloys, Chemistry of Materials28 (2016) 284-292.

[37]C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Gratzel, S. M. Zakeeruddin, U. Rothlisberger, M. Gratzel, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells, Energy Environ Science9 ( 2016)  656-662.

[38]J. W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho, N. G. Park, Formamidinium and Cesium Hybridization for Photo‐and Moisture‐Stable Perovskite Solar Cell, Adv Energy Mater5 ( 2015) 255-265.

[39] S. Agarwal, P. R. Nair, Pinhole efficiency variation in perovskite solar cells, Applied physics22 (2017) 163104. doi.org/10.1063/1.4996315.

 [1] N. Memariyani, M. Omrani, M. Minbashi, Efficiency improvement of solar cell of heterogeneous silicone with gallium intrinsic layer, Journal of research of particle systems, 14 (2017) 103-112.

[2] I. Firozi, I. Mohammadi, Designing of nanoplasmonic solar cells based on excitation optical mods of inside the cell, Journal of research of particle systems ,15 (2017) 89-102.

[3] S. D. Stranks, G. E. Eperon, G. Grancini,  C. Menelaou, M. J. P. Alcocer, T. Leijtens , L. M. Herz,  A. Petrozza, H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science342 (2013) 342-341.

[4] H. Oga, A.Saeki, Y. Ogomi, S. Hayase, S. Seki, Improved  understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps, J Am  Chem, Soc, 136 (2014) 13818-13825.

 [5] J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature Mater9 (2014) 897-903.

[6] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light                       Sensitizers for photovoltaic cells, J Am Chem Soc, 131 (2009)  6050–6051.

[7] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, 6.5% Efficient Perovskite Quantum-     Dot-Sensitized Solar Cell, Nanoscale3 (2011) 4088-4093.

[8] H. S. Kim, C. R. Lee, J. H. Im, T. Moehl, A. Marchioro, S. J. Moon, R. B. Humphry, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci Rep2 (2012) 591-596.

[9] National Renewable Energy Laboratory, Best Research-Cell Efficiencies chart: www.nrel.gov/ncpv/images/efficiency_chart.jpg.

[10] N. J. Jeon, J. H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J.  Seo, S. L. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature517 (2015) 476–480.

[11] M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J. P.  Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K. H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel,  A molecularly engineered hole-transporting material for efficient perovskite solar cells, Nature Energy,15017 (2016) 1.doi.org /10.1038/nenergy.2015.17

 

[12] X. Li, D. Bi, C. Yi, J. D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells, Science,353 (2016) 58–62 .

 

[13] H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim, G. Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells, Nano Energy,7 (2014) 80–85.

[14] J.W. Lee, D. H. Kim, H. S. Kim, S. W.  Seo, S. M. Cho, N. G. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell, AdV  Energy Mater,5 (2015) 1310.

[15] C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger, M. Grätzel, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells,  Energy Environ, Science, 9 (2016) 656–662. 

[16] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry ,K. Zhu,  Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys, Chem Mater,28 (2016) 284–292. 

[17] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin,  S. M. Zakeeruddin, W. Tress, A.  Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency, Energy Environ,Science9 (2016) 1989–1997.

[18]F. Hao, C. C. Stoumpos, D. H. Cao,R. P. H. Chang, M. G. Kanatzidis, Perovskite photonic sources, Nat Photonics8 ( 2014) 489-494.

 [19] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electro-optics of perovskite solar cells, Science342 ( 2013) 341-344.

[20] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-Hole Diffusion Lengths, Science347 (2015) 967-970.

[21] N.J. Jeon, J. Noh, W.S. Yang, Y.C. Kim, J. Soe, Compositional engineering of perovskite materials for high-performance solar cellsNature517 (2015) 476–480.

[22] J.W.  Lee, J. Brabec, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell, Adv Energy Mater5 (2015) 1501310.

 [23] M. Kulbak, D. Cahen, J. Hodes, How important is the organic part of lead halides, J Phys Chem Lett6 (2015) 2452-2456.

 

[24] C.K. Moller, Lead Halide Perovskite Nanocreystal in the Research, Nature182 (1958)1436-1436.

[25] Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang, A. P. Alivisatos,  Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowire,  J Am Chem Soc137 (2015) 16008-16011.

[26] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. L. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature517 (2015)  476-480.

[27] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. L. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature Material,  13 (2015) 897-903.

[28] H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim, J. Y. Kim, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells, Nano Energy7 (2014) 80-85.

[29] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys, Chemistry of Materials28 (2016 ) 284-292.

                                                                                                        

[30] V. M. Goldschmidt, Goldshmidt tolerance factor, Die Nature wissenschaften14 (1926)477-485.

[31] H. L. Wells, S. Schunemann, S. Brittman, K. Chen, Z. Anorg, Halide Perovskite 3D Photonic Crystals for Distributed Feedback Lasers, Chem4 (2017) 2522-2528.

[32]D. B. Mitzi, K. Liang, Synthesis resistivity and thermal properties of the cubic perovskite NH2CH=NH2SnI3 and related systems, J Solid State Chem134 (1997) 376–381.

 

[33] G. Kieslich, S. J. Sun, A.K. Cheetham, Solid-state principles applied to organic-inorganic perovskites: New tricks for an old dog, Chem Science, 5 (2014) 4712–4715.

 

[34]F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nature Photonics,8 (2014)  489–494.

 

[35] M. Saliba, T. Matsui, K. Domanski, J. I. YouanSeo, A. Ummadisingu, M. Gratzel, Incorporation of  Rubidium Cation Perovskite Solar Cells Improves Photovoltaic Performance, Science354 (2016) 206-209.

 [36] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of  Formamidinium and Cesium Lead Iodide Solid-State Alloys, Chemistry of Materials28 (2016) 284-292.

[37]C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Gratzel, S. M. Zakeeruddin, U. Rothlisberger, M. Gratzel, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells, Energy Environ Science9 ( 2016)  656-662.

[38]J. W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho, N. G. Park, Formamidinium and Cesium Hybridization for Photo‐and Moisture‐Stable Perovskite Solar Cell, Adv Energy Mater5 ( 2015) 255-265.

[39] S. Agarwal, P. R. Nair, Pinhole efficiency variation in perovskite solar cells, Applied physics22 (2017) 163104. doi.org/10.1063/1.4996315.