بررسی خواص الکترونی نانوساختارهای n=1-5) C20-nGen , C20-nSin) به روش نظریۀ تابعی چگالی

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 دانشکده علوم پایه، گروه شیمی، دانشگاه آزاد اسلامی واحد یادگار امام خمینی(ره) شهرری، تهران، ایران

2 دانشکده علوم پایه، گروه فیزیک، دانشگاه آزاد اسلامی واحد یادگار امام خمینی(ره) شهرری، تهران، ایران

3 دانشکده علوم پایه، گروه شیمی، دانشگاه آزاد اسلامی واحد تهران شرق.، تهران، ایران

چکیده

در این تحقیق نانو ساختارهایC20 bowl ، (n=1-5) C20-nSin وn=1-5) ) C20-nGenاز نظر پایداری ترمودینامیکی، گاف انرژی، هدایت الکتریکی و کاربرد آنها در سلول خورشیدی به کمک نظریه تابعی چگالی در سطح محاسبات کوانتومیLSDA/6-31G در دمای اتاق مورد بررسی و مقایسه قرار گرفته اند. پایدارترین ساختارها در 300 کلوین، C17Si3 و C15Ge5 نتیجه شده اند. نتایج نشان میدهند که تعداد استخلاف سیلیکون و یا ژرمانیم تاثیر منظمی بر گاف انرژی ندارد اما منجر به کاهش قابل ملاحظة گاف انرژی در همه ساختارها و افزایش هدایت الکتریکی میشود. کمترین گاف انرژی و بیشترین هدایت الکتریکی در C17Ge3 و C16Si4 بدست آمده است. گاف سطح انرژی تراز هومو ی جزء دهندة الکترون و سطح انرژی تراز لوموی جزء پذیرندة الکترون، فاکتور مهمی در انتقال الکترون بین دو ساختار با پتانسیل کاربرد فتو ولتائیکی است. دو ساختار C17Si3 بعنوان پذیرنده الکترون و C15Ge5 بعنوان دهنده الکترون، با ماکزیمم مقدار ولتاژ(Voc) (93/1ولت)، میتوانند در ساخت سلول خورشیدی بکار روند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of the Electronic Properties of C20-nSin and C20-nGen (n=1-5) nano structures by the approach of Density Functional Theory

نویسندگان [English]

  • Farrokh Roya Nikmaram 1
  • Maryam Gholizadeh Arashti 2
  • Sepideh Ketabi 3
1 Department of Chemistry, Faculty of Science,Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
2 Department of Physic, Faculty of Science, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
3 Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

In this research, the thermodynamic stability, Energy of Gap and Electrical conductivity of nano structures of C20 bowl, C20-nSin (n=1-5) and C20-nGen (n=1-5) were investigated at the level of Quantum calculations of LSDA/6-31G of Density Functional Theory (DFT) at the room temperature. We have studied the application of these structures in solar cells. The most stable structures are C15Ge5 and C17Si3 at 300 K. The results show that the substitutes decrease gap of energy and increase the electrical conductivity, but the number of Silicon or Germanium substitute does not have the regular effect on the gap of energy. The C17Ge3 and C16Si4 have the lowest gap of energy and also have more conductivity.
The gap of HOMO and LUMO energy levels of the electron donor and electron acceptor components is the most important factor for the electron transfer with photovoltaic application potential. The two structures of C17Si3 as electron acceptor and C15Ge5 as electron donor with the maximum voltage of 1.93 volt can be used in producing solar cell.

کلیدواژه‌ها [English]

  • Silicon Substitution
  • Germanium
  • Density functional theory
  • Energy Gap
  • C20 Bowl
  • Voc

 

[1] M. Qasemnazhand, F. Marsusi, Theoretical Study of Opto-Electronic properties of Silafulleranes Using Density Functional Theory,Journal of Research on Many-body Systems 7 (2017) 77-87.

[2] M.M. Wienk, M. Turbiez, J. Gilot, R.A.J. Janssen, Narrow- Bandgap Diketo-pyrrolo-pyrrole Polymer Solar Cells: The Effect of Processing on the Performance. Advanced Materials 20 (2008) 2556-2560.

[3] M. Scharber, D. M€uhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design Rules for Donor Bulk Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency Advanced Materials 18 (2006) 789-794.

[4] H. Salehi, A. Abdollahi, Calculation of electronic and optical properties of Na2S in the orthorombic phase, Journal of Research on Many-body Systems 7 (2017) 145-152.

[5] F. Weinhold, C.R. Landis, Natural Bond Orbitals and Extensions Of Localized Bonding Concepts, Chemistry Education: Research And Practice In Europe 2 (2001) 91-104.

[6] D.M. Suresh, M. Amalanathan, S. Sebastian, D. Sajan, I. Hubert Joe, V. Bena Jothy, Ivan Nemec, Vibrational spectral investigation and natural bond orbital analysis of pharmaceutical compound 7-Amino-2,4-dimethylquinolinium formate – DFT approach, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 115 (2013) 595-602.

[7] H. Tabbi, T. Abbaz, A. Bendjeddou, D. Villemin, Theoretical investigations on the molecular structure, HOMO–LUMO, Fukui function, NBO analysis and NLO of amino methyl tetrathiafulvalenes compounds by DFT method, International Journal of Chemical Studies 5 (2017)1368-1375.

[8] J.W. Precker, M.A. da Silva, Experimental estimation of the band gap in silicon and germanium from the temperature voltage curve of diode thermometers, American Journal of Physics 70 (2002)1150-1153.

[9] P. Benjamin, Voltaic Cell, John Wiley, New York, (1983).

[10] J.N. Shive, Semiconductor Devices, New Jersey: Van Nostrand, (1959).

[11] N. Belghiti, M.N. Bennani, S.M. Bouzzine, M. Hamidi, M. Bouachrine, The DFT Chemical Investigations of Optoelectronic and Photovoltaic Properties of Short-Chain Conjugated Molecules, Physical Chemistry Research 2 (2014) 11-20.

[12] P.B. Pablo, M.M. Wienk, R.A.J. Janssen, G.G. Belmonte, Open-Circuit Voltage Limitation in Low- Band gap Diketopyrrolopyrrole - Based Polymer Solar Cells Processed from Different Solvents, Journal Of Physical Chemistry C 115 (2011)15075-15080.

[13] F. Lin, E. Srensen, C. Kallin, A.J. Berlinsky, C20, the Smallest Fullerene, Handbook of Nanophysics: Clusters and Fullerenes, Taylor & Francis Publisher, CRC Press,(2009).

[14] H. Prinzbach, A. Weller, P. Landenberger, Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20, Nature 407 (2000) 60-63.

[15] V. Parasuk, J. Almlof, C20: The smallest fullerene? Chemical Physics Letters 184 (1991)187-190.

[16] M. Feyereisen, M. Gutowski, J. Simons, J. Almlof, Relative stabilities of fullerene, cumulene, and polyacetylene structures for Cn:n = 18-60, Journal of Chemical Physics 96 (1992) 2926-2932.

[17] C.J. Brabec, E.B. Anderson, B.N. Davidson, Precursors to C60 fullerene formation, Physical Review B 46 (1992) 7326-7328.

[18] Z. Wang, P. Day, R. Pachter, Ab initio study of C20 isomers: Geometry and vibrational frequencies, Chemical Physics Letters 248 (1996)121-126.

[19] K. Raghavachari, D.L. Strout, G.K. Odom, Isomers of C20: Dramatic effect of gradient corrections in density functional theory, Chemical Physics Letters 214(1993) 357-361.

[20] C. Allison, K.A. Beran, Energetic analysis of 24 C20 isomers, Journal of Molecular Structure (Theochem) 680 (2004) 59-63.

[21] S.H. Xu, M.Y. Zhang, Y.Y. Zhao, B.G. Chen, J. Zhang, C.C. Sun, Super-valence phenomenon of carbon atoms in C20 molecule, Journal of Molecular Structure (Theochem) 760 (2006) 87-90.

[22] P.R. Taylor, E. Bylaska, J.H. Weare, R. Kawai, C20: Fullerene, bowl or ring? New results from coupled-cluster calculations, Chemical Physics Letters 235 (1995) 558 -563.

[23] W. An, Y. Gao, S. Bulusu, X.C. Zeng, Ab initio calculation of bowl, cage, and ring isomers of C20 and C¯20, Journal of Chemical Physics 122 (2005) 204109-1-8.

[24] Z.X. Cao, Electronic structure and stability of C20 isomers, Chinese Physics Letters 18 (2001) 1060-1062.

[25] J.C. Grossman, L. Mitas, K. Raghavachari, Structure and stability of molecular carbon: Importance of electron correlation, Physical Review Letters 76 (1996)1006.

[26] S. Sokolova, A. Luchow, J.B. Anderson, Energetics of carbon clusters C20 from all-electron quantum Monte Carlo calculations, Chemical Physics Letters 323 (2000) 229-233.

[27] S.H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics 58 (1980) 1200-1211.

[28] H. Aryani Mohamadieh, M.A. Ghazee, M. Izadi Fard, Study of magnetic and electronic properties of NdMnO3 manganite using LSDA and LSDA+U approximations, Journal of Research on Many-body Systems 3 (2014) 25-37.

[29] M. Alecu, J. Zheng, Y. Zhao, D.G Truhlar, Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries, Journal of Chemical Theory and Computation 6 (2010) 2872-2887.

[30] M.J. Frisch, G. W.Trucks, H.B. chlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, M.J. Millam, S.S. Iyengar, J. Tomasi, O. Yazyev, A.J. Austin, R. Cammi, J.A. Pople; Revision B.03 ed., Gaussian, Inc., Pittsburgh PA, (2003).

[31] D. Patidar, K.S. Rathore, N.S. Saxena, K. Sharma, T.P. Sharma,Energy Band Gap And Conductivity Measurement Of Cdse Thin Films, Chalcogenide Letters 5 (2008) 21- 25.

[32] S. Benramache, O. Belahssen, H. Ben Temam, Effect of band gap energy on the electrical conductivity in doped ZnO thin film, Journal of Semiconductors 35 (2014) 073001.

[33] J.S. Blakemore, Solid State Physics, 2nd. Edition by W.B. Saunders Company, Cambridge University Press, (2008).

[34] B.D. Paulsen, C.D. Frisbie, Dependence of Conductivity on Charge Density and Electrochemical Potential in Polymer Semiconductors Gated with Ionic Liquids, Journal of Physical Chemistry C116 (2012)  3132-3141.

[35] V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens, Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells, Journal of Applied Physics 94 (2003) 6849-6854.

[36] S. Gunes, H. Neugebauer, N.S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells, Chemical Reviews 107 (2007) 1324-1338.

[37] B. Qi, J. Wang, Open-circuit voltage in organic solar cells. Journal of Materials Chemistry 22 (2012) 24315-24325.