مطالعه ویژگی‌های ساختار الکترونی و گرادیان‌های میدان الکتریکی اکسید گادولنیم در فاز مکعبی

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 عضو هیات علمی دانشگاه صنعتی خواجه نصیرالدین طوسی

2 دانشکده فیزیک، دانشگاه صنعتی خواجه نصیرالدین طوسی ، تهران ، ایران

چکیده

در این پژوهش بر اساس نظریۀ تابعی چگالی با استفاده از روش امواج تخت بهبود یافته و با بهره گیری از تقریب شیب تعمیم یافته (GGA) و اعمال پارامتر هابارد به محاسبات، ویژگی‌های ساختار الکترونی اکسید گادولنیم در فازمکعبی مورد بررسی قرار گرفته است. رفتارگرادیان‌های میدان الکتریکی (EFG) برای ترکیب مورد بررسی تحلیل و با مقادیر تجربی گزارش شده مقایسه شده‌اند. همچنین چگالی حالت‌های کلی و جزیی الکترونی اکسید گادولنیم در فاز مکعبی محاسبه و سهم هر کدام از اربیتال‌های اتمی در چگالی حالت کلی مشخص شدند. بین نتایج بدست آمده با پژوهش‌های تجربی دیگران همخوانی قابل قبولی مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of electronic structure and Electric Field Gradient of Gd2O3 in cubic phase

نویسندگان [English]

  • Mahmoud Jafari 1
  • Hassan Jamnezhad 2
2 Faculty of Physics, KNT University of Technology, Tehran, Iran
چکیده [English]

In this work, the electronic properties of the cubic Gadolinium oxide were investigated using the full-potential linearized augmented plane wave method in the density functional theory (DFT) framework. The calculations are performed within the generalized gradient approximation (GGA), adding an empirical Hubbard U potential. The behavior of the Electric Field Gradient was analyzed and compared with experimental data’s. Moreover, the total and partial densities of states of cubic Gd2O3 are presented and the contribution of different orbitals was analyzed from the total and the partial density of states curves. The calculations are in good agreement with the theoretical and experimental values.

کلیدواژه‌ها [English]

  • Density functional theory
  • Electric field gradient
  • Hubbard parameter
  • Density of States
  • Rare Earth Oxides
  • Gadolinium oxide
 

[1] M. Hong, J. Kwo, A.R. Kortan, J.P. Mannaerts, A.M. Sergent, Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation, Science 283 (1999) 1897-1900.

[2] G. Adachi, N. Imanaka, The binary rare earth oxides Chemical reviews 984 (1998) 1479-1514.

[3] L. Laversenne, et al. Optimization of spectroscopic properties of Yb 3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3 Optical materials 164 (2001) 475-483.

[4] J. Zarembowitch, J. Gouteron, Raman spectrum of single crystals of monoclinic B type gadolinium sesquioxide, Journal of Raman Spectroscopy94 (1980) 263-265.

[5] Y. Fujimoto, et al. Evaluation of characterization of rare-earth doped sesquioxideceramic scintillators, Optical Materials 342 (2011) 448-451.

[6] N.H. Menzler, F. Tietz, S. Uhlenbruck, H.P. Buchkremer, D. Stover, Materials and manufacturing technologies for solid oxide fuel cells, Journal of Material Science 45(2010) 3109-3135.

[7] N. Sammes, Y. Du, Intermediate-temperature SOFC Electrolytes, Fuel Cell Technologies: State and Perspectives NATO Science Series202(2005) 19-34.

[8] B. Antic, M. Mitric, D. Rodic, Structure properties and magnetic susceptibility of diluted magnetic semiconductor Y2− xHoxO3Journal of magnetismandmagneticmaterials 145 3 (1995) 349-356.

[9] N.N. Greenwood, T.C. Gibb, Mossbauer Spectroscopy Chapman & Hall, London, (1971)

 [10] E.N. Kaufmann, R.J. Vianden, The electric field gradient in noncubic metals, Reviews of Modern Physics 51 1 (1979) 161-214.

[11] H. Frauenfelder, R.M. Steffen, Alpha, Beta and Gamma-Ray Spectroscopy, North Holland field gradients in noncubic metals, Physical Review Letters 34 20 (1975) 1280-1283.

[12] R.S. Raghavan, E.N. Kaufmann, P. Raghavan, Universal correlation of electronic and ionic field gradients in noncubic metals, Physical Review Letters  34 20 (1975) 1280-1283.

 [13] T.P. Das, E.L. Hahn, Nuclear Quadrupole Resonance Spectroscopy, Suppl. 1 to Solid State Physics, Academic Press, New York (1958).

[14] D. Richard et al. Abinitio LSDA and LSDA+ U study of pure and Cd-doped cubic lanthanide sesquioxides, Physical Review B 88 16 (2013) 165206.

[15] L. Eyring, The binary rare earth oxides, Handbook of Physics and Chemistry of Rare Earths, Vol.3North Holland, Amsterdam (1979).

[16] G. Bonnet, M. Lachkar, J.P. Larpin, J.C. Colson, Characterization of thin solid films of rare earth oxides formed by the metallo-organic chemical vapour deposition technique, for high temperature corrosionapplications, Thin Solid Films 261 (1995) 31-36.

[17] W. Heitmann, Reactively Evaporated Films of Scandia and Yttria, Applied optics12 (1973) 394-397.

[18] E. Zych, On the reasons for low luminescence efficiency in combustion-made Lu2O3:Tb, Optical Materials, 16 (2001) 445-452.

[19] P. Hohenberg, W. Kohn, Density Functional Theory (DFT), Physical ReviewB 136 (1964) 864-871

[20] J.P. Perdew, K. Burke, M. Ernzerhof, generalized gradient approximation made simple, Physical Review Letters 77 (1996)3865-3868.

[21] V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner,Physical Review 44 (1991) 943-954.

[22] V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyżyk, G.A. Sawatzky, Density functional theory and NiO hotoemission spectra, Physical Review B 48 (1993) 16929-16934.

[23] H. Jamnezhad, M. Jafari, Structure of Gd2O3 nanoparticles at high temperature, Journal of Magnetism and Magnetic Materials 408(2016) 164-167.

[24] H. Jamnezhad, M. Jafari, Structural, electronic, and optical properties of C-type Gd2O3: a density functional theory investigation. Journal of Computational Electronics16 (2017) 272-279.

[25] A.B. Shick, A.I. Liechtenstein, W.E. Pickett, Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis, Physical Review B 60 (1999) 10763-10769.

[26] B.J. Kennedy, M. Avdeev, The Structure of C-type Gd2O3. A Powder Neutron Diffraction Study using Enriched 160Gd, Australian Journal of Chemistry 64 (2011) 119–121

[27] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, (2001).

[28] P. Larson, W.R.L. Lambrecht, A. Chantis, M. van Schilfgaarde, Electronic structure of rare-earth nitrides using the LSDA+Uapproach: importance of allowing 4f orbitals to break the cubiccrystal symmetry, Physical Review B 75 (2007) 045114

[29] F.D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proceedings of the National Academy of Sciences, USA30 (1944) 244-247.   

[30] M. Weinert, Solution of Poisson's equation: Beyond Ewald-type methods Journal of Mathematical Physics22 (1981) 2433-2439.

[31] J.D. Cashion, D.B. Prowse, A. Vas, Mossbauer effect study of gadolinium compounds using 155Gd, Journal of Physics C: Solid State Physics 616 (1973) 2611-2624.

 [32] J.Shitu et al. Electric-field gradients in Sm2O3, Gd2O3, and Ho2O3 measured with perturbed angular correlation spectroscopy, Physical Review B 4613 (1992) 7987-7993.

[33] P. Blaha, K. Schwarz, P.B. Dederichs, First-principles calculation of the electric-field gradient in hcp metals, Physical Review B 37 (1988) 2792-2796.

[34] R. Coehoorn, K.H.J. Bushow, M.W. Dirken, R.C. Thiel, Valence-electron contributions to the electric-field gradient in hcp metals and at Gd nuclei in intermetallic compounds with the ThCr2Si2 structure, Physical Review B 42(1990) 4645-4655.

[35] A.V. Prokofiev, A.I. Shelykh, B.T. Melekh, Periodicity in the band gap variation of Ln2X3 (X=O, S, Se) in the lanthanide series, Journal of alloys and compounds 242(1996) 41-44

[36] R.M. Moon, W.C. Kochlcr, Magnetic properties of Gd2O3, Physical Review B 11(1975) 1609-1622.

[37] ا. قاسمی‌خواه، س. جلالی اسدآبادی، خواص الکترونی فلز پادفرومغناطیس UBi2 به‌روش تبادلی دقیق برای الکترون‌های همبسته (EECE)، مجلة پژوهش فیزیک ایران11 4 (1390) 396-387.

[37] E Ghasemikhah, S Jalali Asadabadi, Electronic properties of antiferromagnetic UBi2 metal by exact exchange for correlated electrons method, Iranian Journal of Physics Research 11 4 (1390) 387-396.