بررسی و مقایسة خواص الکترونی و ترابردی پنتاسین و پرفلوروپنتاسین

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 عضو هیئت علمی، گروه فیزیک، دانشگاه پیام نور، تهران، ایران

2 گروه فیزیک، دانشگاه پیام نور، تهران، ایران

چکیده

در این پژوهش خواص الکترونی و ترابردی برای دو مولکول پنتاسین و پرفلوروپنتاسین با استفاده از محاسبات اصول اولیه بر مبنای نظریۀ تابعی چگالی و تابع گرین غیر تعادلی انجام شد. نتایج نشان داد که جایگزینی فلوئور به جای هیدروژن در پنتاسین باعث کاهش گاف HOMO-LUMO در حدود 0.2 الکترون ولت می‌شود که قابل مقایسه با نتایج دیگران است. بیشترین مشارکت چگالی حالت‌ها حول انرژی فرمی برای هر دو مولکول مربوط به اربیتال p2 کربن است. محاسبات ترابرد الکترونی برای هر دو مولکول پنتاسین و پرفلوروپنتاسین در اتصال طلا(111)/مولکول/طلا(111) بررسی گردید و ضریب ترابرد الکترونی در بایاس بین صفر تا دو ولت و منحنی جریان ولتاژ برای هر دو مولکول محاسبه و مقایسه شد. ضریب ترابرد الکترونی برای هر دو سامانه، شامل قله‌های تشدیدی است که این قله‌ها عمدتاً مربوط به قله‌های HOMO و LUMO مولکول‌ها می‌باشد. میزان جریان به جز در محدودة کوچکی حول یک ولت، در سامانة طلا/پنتاسین/طلا در مقایسه با سامانة طلا/پرفلوروپنتاسین/طلا بیشتر است، به طوری که در ولتاژ 2V اختلاف دو جریان به حداکثر میزان خود یعنی 5μA می‌رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Study and comparison of the electronic and transport properties of pentacen and perfluropentacene

نویسندگان [English]

  • Raheleh Pilevar Shahri 1
  • Zahra Adineh 2
1 Physics Dep., Payame Noor University, Thehran, Iran
2 Physics Dep., Payame Noor University, Tehran, Iran
چکیده [English]

In this study, the electronic and transport properties of pentacene and perfluropentacene are investigated using first principle calculations based on density functional theory and non-equilibrium Green’s function. The results show that the HOMO-LUMO gap of perfluropentace is about 0.2 eV smaller than that of pentacene which is comparable with the reported value of 0.2 eV. For both molecules, the most contribution in DOS around Fermi energy is related to 2p orbitals of carbon. Electron transport calculations are investigated for both molecules of pentacene and perfluropentacene in Au(111)/molecule/Au(111) junction. Transmission coefficients and I-V curves up to 2V have been calculated and compared for both molecules. The transmission coefficients are composed from resonant peaks which are mostly originated from HOMO and LUMO peaks of the molecules. The calculated current in Au/pentacene/Au junction is more than the current in Au/perfluropentacene/Au junction except a small interval around 1V, in a way that the difference between the currents get the maximum value of 5μA at 2V.

کلیدواژه‌ها [English]

  • Pentacene- Perfluropentacene
  • Electronic and transport properties
  • Transmission coefficient
  • I-V curve
  • Non-equilibrium Green's Function
  • Molecular electronics
[1] D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Molecular-Scale Electronics: from concept to function, Chemical Reviews 116 (2016) 4318-4441.

[2] S.J. van der Molen, R. Naaman, E. Scheer, J.B. Neaton, A. Nitzan, D. Natelson N.J. Tao, H. van der Zant, M. Mayor, M. Ruben, M. Reed, M. Calame, Visions for a molecular future, Nature Nanotechnology 8 (2013) 385-389.

[3] E. Lortscher, Wiring Molecules into Circuits, Nature Nanotechnology 8 (2013) 381-384.

[4] S.M. Lindsay, M.A. Ratner, Molecular transport junctions: clearing mists, Advanced Materials 19 (2007) 23-31.

[5] F. Chen, N.J. Tao, Electron transport in single molecules: from benzene to graphene, Accounts of Chemical Research 42 (2009) 573-573.

[6] Y. Tanaka, Y. Kato, T. Tada, S. Fujii, M. Kiguchi, M. Akitaet, Doping of Polyyne with an organometallic fragment leads to highly conductive metallapolyyne molecular wire, Journal of the American Chemical Society 140 (2018)10080-10084.

[7] F. Chen, X.L. Li, J. Hihath, Z.F. Huang, N.J. Tao, Effect of anchoring groups on single-molecule conductance:  comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules, Journal of the American Chemical Society 128 (2006) 15874-15881.

[8] S.K. Park, T.N. Jackson, J.E. Antony, D.A. Mourey, High mobility solution processed 6, 13-bis (triisopropyl-silylethynyl) pentacene organic thin film transistors, Applied Physics Letters 91(2007) 1-3.

[9] J. Anthony, the Larger Acenes: Versatile Organic Semiconductors, Angewandte Chemie International Edition 47 (2008) 452-483.

[10] B.B. Jang, S.H. Lee, Z.H. Kafafi, Asymmetric pentacene derivatives for organic light-emitting diodes, Chemistry of Materials 18 (2006) 449-457.

[11] M.A. Wolak, B.B. Jang, L.C. Palilis, Z.H. Kafafi, Functionalized pentacene derivatives for use as red emitters in organic light-emitting diodes, The Journal of Physical Chemistry B 108 (2004) 5492-5499.

[12] B.P. Rand, J. Genoe, P. Heremans, J.S. Poortmans, Solar cells utilizing small molecular weight organic semiconductors, Progress in Photovoltaics: Research and Applications 15 (2007) 659-676.

[13] R. Pilevarshahri, I. Rungger, T. Archer, S. Sanvito, N. Shahtahmassebi, Spin transport in higher n-acene molecules, Physical Review B 84 (2011) 174437, 1-6.

[14] O.D. Jurchescu, J. Baas, T.T.M. Palstra, Effect of impurities on the mobility of single crystal pentacene, Applied Physics Letters 84 (2004) 3061-3063.

[15] H. Chen, I. Chao, Toward the rational design of functionalized pentacene: reduction of the impact of functionalization on the reorganization energy, ChemPhysChem 7 (2006) 2003-2007.

[16] Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, and S. Tokito, Perfluoropentacene: high-performance p-n junctions and complementary circuits with pentacene, Journal of the American Chemical Society 126  (2004) 8138-8140.

[17] J. Puigdollers, C. Voz, I. Martin, A. Orpella, M. Vetter, R. Alcubilla, Pentacene thin-film transistors on polymeric gate dielectric: device fabrication and electrical characterization, Journal of Non-Crystalline Solids 617(2004) 338-340.

[18] H. Yanagisawa, T. Tamaki, M. Nakamura, K. Kudo, Structural and electrical characterization of pentacene films on SiO2 grown by molecular beam deposition, Thin Solid Films 398 (2004) 464-465.

[19] A. El Amrani, B. Lucas, A. Moliton, Electrical characterizations of a pentacene-based thin film transistor under optical excitation, The European Physical Journal Applied Physics 41 (2008) 19-28.

[20] L. Diao, C.D. Frisbiea, D.D. Schroepfer, P.P. Ruden, Electrical characterization of metal/pentacene contacts, Journal of Applied Physics 101 (2007) 014510, 1-8.

[21] R.G. Endres, C.Y. Fong, L.H. Yang, G. Witte, Ch. Woll, Structural and electronic properties of pentacene molecule and molecular pentacene, solid Computational Materials Science 29 (2004) 362-370.

[22] L.D. Betowski, M. Enlow, L. Riddick, D.H. Aue, Calculation of Electron Affinities of Polycyclic Aromatic Hydrocarbons and Solvation Energies of Their Radical Anion, The Journal of Physical Chemistry A 110 (2006) 12927-12946.

[23] T.P. Nguyen, J.H. Shim, J.Y. Lee, Density Functional Theory Studies of Hole Mobility in Picene and Pentacene Crystals, The Journal of Physical Chemistry C 119 (2015)11301-11310.

[24] M.C.R. Delgado, K.R. Pigg, S. Filho, N. E. Gruhn, et al., Impact of perfluorination on the charge-transport Parameters of oligoacene crystals, Journal of the American Chemical Society 131 (2009) 1502-1512.

[25] D.U. Gong-He, R. Zhao-Yu, P. Guo, J.M. Zheng, Halopentacenes: Promising Candidates for Organic Semiconductors, Chinese Physics Letters 26(2009) 1-4.

[26] Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, S. Tokito, Perfluoropentacene: High-Performance p-n junctions and complementary circuits with pentacene, Journal of the American Chemical Society 126 (2004) 8138-8140.

[27] J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, Journal of Physics: Condensed Matter 14 (2002) 2745-2779.

[28] A.R. Rocha, V.M. Garcia-Suarez, S.W. Bailey, C.J. Lambert,J. Ferrer, S. Sanvito, Towards molecular spintronics, Nature Materials 4 (2005) 335-339.

[29] A.R. Rocha, V.M. Garcia-Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Spin and molecular electronics in atomically generated orbital landscapes, Physical Review B 73 (2006) 085414, 1-22.

[30] I. Rungger, S. Sanvito, Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition, Physical Review B 78 (2008), 035407, 1-13.

[31] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B 23 (1981) 5048-5079.

[32] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77(1996) 3865-3868.

[33] C.D. Pemmaraju, I. Rungger, S. Sanvito, Ab initio calculation of the bias-dependent transport properties of Mn12 molecules, Physical Review B 80 (2009)104422,1-9.

[34] I. Rungger, X. Chen, U. Schwingenschlogl, S. Sanvito, Finite-bias electronic transport of molecules in a water solution, Physical Review B 81 (2010), 235407, 1-9.

[35] C. Toher, I. Rungger, S. Sanvito, Simulating STM transport in alkanes from first principles, Physical Review B 79 (2009) 205427, 1-14.

[36] S. Datta, Electron Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, (1995).

[37] I. Kaur, W. Jia, R.P. Kopreski, S. Selvarasah, M.R. Dokmeci, C. Pramanik, N. E. McGruer, G.P. Miller, Substituent Effects in pentacenes: Gaining Control over HOMO−LUMO Gaps and Photo oxidative Resistances, Journal of the American Chemical Society 130 (2008) 16274-16286.

[38] J.E. Anthony, J. Gierschner, C.A. Landis, S.R. Parkin, J.B. Shermana, R.C. Bakus, A new functionalization strategy for pentacene, Chemical Communications (2007)4746-4748.

[39] C.D. Pemmaraju, T. Archer, D. Sanchez-Portal, S. Sanvito, Atomic-orbital-based approximate self-interaction correction scheme for molecules and solids, Physical Review B 75 (2007) 045101, 1-16.