تأثیر پارامترهای فیزیکی بر کمینه بازتاب در ساختار اتو گرافنی

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 فوتونیک، پژوهشکده فیزیک کاربردی،دانشگاه تبریز، تبریز، ایران

2 دانشگاه تبریز

چکیده

در این تحقیق پاسخ نوری یک هندسه اتو در برگیرنده یک ورقه گرافن، در محدوده فرکانس تراهرتز meV 10-0.5 مورد بررسی قرار می گیرد. در این ساختار برانگیختگی پلاریتونهای پلاسمون سطحی بر روی گرافن موجب می شود که در محدوده زاویه های بزرگتر از زاویه بحرانی یک افت قابل توجه در ضریب بازتاب ظاهر شود و شدت نور بازتابیده به یک مقدار کمینه برسد. این پدیده دارای کاربردهای زیادی در ادوات می باشد. موقعیت کمینه ایجاد شده به پارامترهای فیزیکی ساختار بستگی دارد. در این تحقیق تاثیر این پارامترها از جمله ضخامت لایه هوا، ثابت دی الکتریک زیرلایه و مقدار پتانسیل شیمیایی گرافن مورد بررسی قرار گرفته است. بررسیهای انجام شده می تواند در طراحی و بهبود ادوات پلاسمونیکی پر اهمیت باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Physical Parameters on the Reflection Minimum in Graphene based Otto Configuration

نویسندگان [English]

  • Vahideh Mohadesi 1
  • asghar asgari 2
  • Vahid siahpoush 2
1 photonics,RIAPA,university of tabriz,tabriz,iran
2 university of tabriz
چکیده [English]

We study the electromagnetic response of Otto configuration including graphene layer in THz frequencies (.5-10 meV). Due to the excitation of SPPs a minimum in the intensity of the reflected beam appears at the angle of total internal reflection. The position of the minimum depends on the physical parameters of the structure. We study its position changing the angle and frequency of incident beam. Effects of the physical parameters such as the thickness of the air gap, dielectric constant of the substrate and conductive tunability of graphene are investigated. Our results can be important in designing the SPR based devices.

کلیدواژه‌ها [English]

  • "Graphene"
  • "Otto configuration"
  • "Reflectance"
  • "Surface Plasmon Polariton"
[1] W.L. Barnes, Surface plasmon–polariton length scales: a route to sub-wavelength optics, Journal of Optics A: Pure and Applied Optics 8 (2006) 87-93.

[2] W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature424 (2003) 824-830.

[3] S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M. Skovgaard, J.M. Hvam, Waveguiding in surface plasmon polariton band gap structures, Physical review letters 86 (2001) 3008-3011.

[4] T. Søndergaard, V. Siahpoush, J. Jung, Coupling light into and out from the surface plasmon polaritons of a nanometer-thin metal film with a metal nanostrip, Physical Review B 86 (2012) 085455.

[5] M. Tahmasebpour, M. Bahrami, A. Asgari, Investigation of subwavelength grating structure for enhanced surface plasmon resonance detection, Applied optics53 (2014) 6307-6316.

[6] F. Rana, Graphene terahertz plasmon oscillators, Nanotechnology, IEEE Transactions on7 (2008) 91-99.

[7] M. Jablan, M. Soljacic, H. Buljan, Plasmons in graphene: Fundamental properties and potential applications, Proceedings of the IEEE 101 (2013) 1689-1704.

[8] I.-T. Lin, Y.-P. Lai, K.-H. Wu, J.-M. Liu, Terahertz Optoelectronic Property of Graphene: Substrate-Induced Effects on Plasmonic Characteristics, Applied Sciences 4 (2014) 28-41.

[9] V. Mohadesi, V. Siahpoush, A. Asgari, Investigation of leaky and bound modes of graphene surface plasmons, Journal of Applied Physics 122 (2017) 133113-6.

[10]       س. بهزاد، ر. چگل، بررسی خواص الکتریکی و اپتیکی گرافن با زیر لایه BC3 پژوهش سیستمهای بس‌ذره‌ای 8 16 (1397) 27-21.

[10] S.Behzad, R. Chegel, Investigation of the electro-optical properties of graphene with BC3 substrate, Journal of Research on Many-body Systems 8 (2018) 21-27.

[11]       س. س. توسلمند، م. هاشمی، طراحی فرامواد گرافینی با قابلیت تنظیم خواص اپتیکی، پژوهش سیستم‌های بس‌ذره‌ای 6 ویژه نامه شمارة1 (1395) 134-127.

[11] S.S. Tavasolmand, M. Hashemi, Designing Graphene-based Metamaterials with Tunable Optical Properties, Journal of Research on Many-body Systems 6 (2016) 127-134.

 [12]      ف. مرادیانی، م. صیفوری و ک. عابدی، تحلیل و طراحی سوئیچ‏ پلاسمونیک با استفاده از نانونوارهای گرافنی در طول‏ موج‏ های مادون‏ قرمز میانی، پژوهش سیستم‌های بس‌ذره‌ای 8 16 (1397) 105-101.

[12] F. Moradiani, M. Seifouri, K. Abedi, Design and Analysis of Plasmonic Switch at mid-IR Wavelengths with Graphene Nano-Ribbons, Journal of Research on Many-body Systems 8 16 (2018) 101-105.

 

 [13] J. Zhang, L. Zhang, W. Xu, Surface plasmon polaritons: physics and applications, Journal of Physics D: Applied Physics 45 (2012) 113001-19.

[14] L. Jiang, J. Guo, Q. Wang, X. Dai, Y. Xiang, Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration, Plasmonics (2016) 1-7.

[15] F. Ramos-Mendieta, J. Hernández-López, M. Palomino-Ovando, Transverse magnetic surface plasmons and complete absorption supported by doped graphene in Otto configuration, AIP Advances 4 (2014) 067125-13.

[16] C. Sorger, S. Preu, J. Schmidt, S. Winnerl, Y.V. Bludov, N.M. Peres, et al., Terahertz response of patterned epitaxial graphene, New Journal of Physics 17 (2015) 053045.

[17] W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, et al., Excitation and active control of propagating surface plasmon polaritons in graphene, Nano letters 13 (2013) 3698-3702.

[18] Y.V. Bludov, M. Vasilevskiy, N. Peres, "Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene, Europhysics Letters 92 (2010) 68001.

[19] Y.V. Bludov, M.I. Vasilevskiy, N.M. Peres, Tunable graphene-based polarizer, Journal of Applied Physics 112 (2012) 084320.

[20] S.A. Maier, Plasmonics: fundamentals and applications, Springer Science & Business Media (2007).

[21] V. Mohadesi, A. Asgari, V. Siahpoush, Radiation characteristics of Leaky Surface Plasmon polaritons of graphene, Superlattices and Microstructures119 (2018) 40-45.

[22] G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, Journal of Applied Physics 103 (2008) 064302.