فازهای عایق توپولوژیکی و کانال های خط صفر در گرافین

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

گروه فیزیک، دانشکده علوم، دانشگاه لرستان، لرستان، ایران

چکیده

فازهای توپولوژیکی را می‌توان در گرافین تک لایه ودو لایه با حضور جفت شدگی اسپین – مدار و پتانسیل خارجی ایجاد کرد. در این کار ویژگی‌های مختلف کانال‌های خط صفر یک بعدی فلزی را در اتصال‌های گرافینی تک لایه و دو لایه بررسی می‌کنیم. در واقع اتصال‌های گرافینی بین نواحی با نظم توپولوژیکی مختلف می‌باشد. برای تحقیق چگونگی پیدایش کانال‌های خط صفر یک بعدی، از روش هامیلتونین بستگی قوی استفاده می‌کنیم. با توجه به حالت های حاصل شده، تعداد کانال‌های یک بعدی فلزی در اتصال‌های با لبه‌های مختلف، متفاوت است که این نتیجه می‌تواند به عنوان مشخصه‌ای برای تشخیص مواد تک لایه و دو لایه گرافینی از هم و همچنین روشی برای تمیز دادن نوع لبه‌ها (زیگزاگ یا صندلی شکل) از هم می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Topological insulator phases and zero-line channels in graphene

نویسندگان [English]

  • zeinab Rashidian
  • amin salehi
Department of Physics, Faculty of Science, Lorestan University, Khorram Abad, Iran
چکیده [English]

Topological phases can be induced in single and bilayer graphene in the presence of appropriate spin-orbit coupling and external potentials. We survey the character of the different metallic 1D zero line channels at bulk-vacuum edges and at interfaces between regions with different bulk topological order in single and bilayer graphene. We use a tight-binding Hamiltonian for ribbon geometries to study the character of the 1D zero-line channels appearing at the interfaces between regions of different topological phases. Depending on the resulting states, the number of 1D metallic channels at interface and edge differ that these can be thought as a characterization of the states.

کلیدواژه‌ها [English]

  • Graphene
  • Armchair
  • Zigzag
  • Spin orbit coupling
  • Topological phase
[1] D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized hall conductance in a two-dimentional periodic potential, Physical Reviewletters 49 (1982) 405; Q. Niu, D.J. Thouless, Y.-S. Wu, Quantized hall conductance as a topological invariant, Physical Review B 31 (1985) 3372.

[2] C.L. Kane, E.J. Mele, Quantum spin hall effect in graphene, Physical Reviewletters 95 (2005) 226801.

[3] I. Martin, Y.M. Blanter, A.F. Morpurgo, Giant intrinsic carrier mobilities in graphene and its bilayer, Physical Reviewletters 100 (2008) 36804.

[4] J. Jung, F. Zhang, Z. Qiao, A.H. Macdonald, Valley hall kink and edge states in multilayer graphene, Physical ReviewB 84 (2011) 075418

[5] G.W. Semenoff, V. Semenoff, F. Zhou, Domain walls in gappedgraphene, Physical Reviewletters 101 (2008)087204.

[6] W. Yao, S.A. Yang, Q. Niu, Edge states in graphene: From gapped flat band to gapless chiral modes, Physical Reviewletters 102 (2009) 096801.

[7] Z. Qiao, J. Jung, Q. Niu, A.H. MacDonald, Electronic Highways in Bilayer Graphene, Nano letters 11 (2011) 3453-3459.

[8] R. Jackiw, Zero modes of the vortex-fermion system, Nuclear Phyisics B 180 (1981) 681-691.

[9] F.D.M. Haldane, Model for a Quantum Hall Effect without Landau Levels, Physical Review Letters 61 2015 (1988).

[10] D. Xiao, W. Yao, Q. Niu, Valley-Contrasting Physics in Graphene, Physical Reviewletters 99 236809 (2007).

[11] F. Zhang, J. Jung, G.A. Fiete, Q. Niu, A.H. MacDonald, Spontaneous Quantum Hall States in Chirally Stacked Few-Layer, Physical Reviewletters 106 156801 (2011).

[12] J. Jung, F. Zhang, A.H. MacDonald, Lattice theory of pseudospin ferromagnetism in bilayer graphene, Physical Review B 83 115408 (2011).

[13] J. Li, I. Martin, M. B¨uttiker, A.F. Morpurgo, Topological origin of subgap conductance in insulating bilayer graphene, Nature Physics 7 (2011) 38.

[14] F. Zhang, J. Jung, A.H. MacDonald, Spontaneous Chiral Symmetry Breaking in Bilayer Graphene, Journal of Physics: Conference Series 334 (2012) 012002.

[15] M. Killi, S. Wu, A. Paramekanti,Band structures of bilayer graphene superlattices, Physical Reviewletters 107 (2011) 086801.

[16] Z.H. Qiao, W.-K. Tse, H. Jiang, Y. Yao, Q. Niu,Two-dimentional topological insulator state and topological phase transition, Physical Reviewletters 107 (2011) 256801.

[17] X. Li, Z. Qiao, J. Jung, Q. Niu, Majorana fermions in supercomducting nanowires without spin-orbit coupling, Physical Review B 85 (2012) 201404 (R).