رشد نانوپوسه های MoS2 ایستاده بر سطح به روش رسوب‌دهی بخار شیمیایی

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 پژوهشکده علوم وفناوری نانو، دانشگاه صنعتی شریف، تهران، ایران

2 ریاست پژوهشکده علوم وفناوری نانو، دانشگاه صنعتی شریف

3 دانشکده فیزیک، دانشگاه صنعتی شریف، تهران، ایران

چکیده

خواص الکترونیکی جالب و ویژگی‌های کاتالیستی چندلایه‌های دوبعدی MoS2امروزه توجه محققان را به خود جلب کرده است. در این مقاله سنتز نانوپوسه‌های MoS2 ایستاده روی زیرلایه SiO2/Si در فرآیند سولفید شدن سریع به روش رسوب بخار شیمیایی، گزارش شده است. مشخصه‌یابی مواد با استفاده از طیف‌سنجی رامان، XRD و FE-SEM انجام گردید. نتایج XRD نشان دهنده فاز غالب 2H-MoS2 و فاصله دو پیک برجسته‌ی E12g و A1g در پراکندگی رامان، ضخامت 6 تا 10 لایه اتمی برای پوسه‌ها را تصدیق می‌کند. با توجه به داده‌های تجربی، مکانیزم رشد را بر اساس دانه‌بندی و رشد دوبعدی و در مرحله بعدی بهم پیوستن جزایر دوبعدی و در مرحله نهایی رشد پوسه‌ای ایستاده بهم متصل معرفی کرده‌ایم. این ساختارهای ایستاده که سایت‌های فعال زیادی در لبه‌ها دارند کاربردهای بالقوه و امیدوار کننده‌ی بسیاری در ترانزیستورهای ظریف، حسگرهای گاز و واکنش‌های کاتالیستی خواهند داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Growth of standing MoS2 nanoflakes by Chemical Vapor Deposition

نویسندگان [English]

  • Maryam Barzeger 1
  • Azam Irajizad 2 3
1 Nanotechnology Research Institute, Sharif University of Technology, Tehran, Iran
2 Institute for nanoscience and nanotechnology, Sharif University of Technology
3 Institute for nanoscience and nanotechnology, Sharif University of Technology
چکیده [English]

Interesting electronic and catalytic properties of two-dimensional MoS2 few-layers have attracted the attention of researchers today. In this paper, the synthesis of MoS2 nanoflakes standing on the SiO2/Si substrate in the process of rapid sulfidation by chemical vapor deposition has been reported. Material characterization was performed using Raman spectroscopy, XRD and FE-SEM. The XRD results indicate the dominant phase of 2H-MoS2 and the distance between the two leading peaks of E12g and A1g in the Raman dispersion confirms the thickness of 6 to 10 atomic layers. According to the experimental data, the growth mechanism was introduced based on nucleation and growth of two-dimensional islands, and in the next stage, coalescence of these two-dimensional islands and in the final stage, standing nanoflakes grow. These structures that have active sites on the edges have many potential and promising applications in fine transistors, gas sensors and catalytic reactions.

کلیدواژه‌ها [English]

  • 2D materials
  • TMDCs
  • MoS2 nanoflakes
  • chemical vapor deposition (CVD)
 

[1] A.N. Enyashin., G. Seifert, Electronic Properties of MoS2 Monolayer and Related Structures. Наносистемы Физика Химия Математика 5 (2014), 4.

[2] S. Ghatak, A.N. Pal, A. Ghosh, Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors. ACS Nano 5 (2011), 7707–7712.

[3] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-Layer MoS2 Transistors. Nature Nanotechnology 6 (2011), 147–150.

[4] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physics Review Letter 105 (2010), 136805.

[5] K.S. Novoselov, A.K. Geim; S.V. Morozov, D. Jiang, Y. Zhang; S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science 306 (2004), 666–669.

[6] L.S. Byskov, J.K. Nørskov, B.S. Clausen, H. Topsøe, Edge Termination of MoS2 and CoMoS Catalyst Particles. Catalyst Letters 64 (2000), 95–99.

[7] A. Kumar, P.K. Ahluwalia, Electronic Structure of Transition Metal Dichalcogenides Monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from Ab-Initio Theory: New Direct Band Gap Semiconductors. The European Physical Journal B 85 (2012), 186.

[8] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive Photodetectors Based on Monolayer MoS2. Nature Nanotechnology 8 (2013), 497–501.

[9] H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets. Accounts of Chemical Research 47 (2014), 1067–1075.

[10] X. Ren, L. Pang, Y. Zhang, X. Ren, H. Fan, S. (Frank). Liu, One-Step Hydrothermal Synthesis of Monolayer MoS2 Quantum Dots for Highly Efficient Electrocatalytic Hydrogen Evolution. Journal of Materials Chemistry A 3 (2015), 10693–10697.

[11] J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsøe, B.S. Clausen, E. Lægsgaard, F. Besenbacher, Size-Dependent Structure of MoS2 Nanocrystals. Nature Nanotechnology 2 (2007), nnano.2006.171.

[12] S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 7 (2013), 2898–2926.

[13] Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials, Science 331 (2011), 568-571

[14] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nature Nanotechnology 7 (2012), 699–712.

[15] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nature Chemistry 5 (2013), 263–275.

[16] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, et al. Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates Nano Letters 12 (2012), 1538-1544

[17] H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A.H. Castro Neto, J. Martin, S. Adam, B. Özyilmaz, et al. Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition. Nano Letters 14 (2014), 1909–1913.

[18] V. Senthilkumar, L.C. Tam, Y.S. Kim, Y. Sim, M.-J. Seong, J.I. Jang, Direct Vapor Phase Growth Process and Robust Photoluminescence Properties of Large Area MoS2 Layers. Nano Research 7 (2014), 1759–1768.

[19] T.S. Sreeprasad, P. Nguyen, N. Kim, V. Berry, Controlled, Defect-Guided, Metal-Nanoparticle Incorporation onto MoS2 via Chemical and Microwave Routes: Electrical, Thermal, and Structural Properties. Nano Letters 13 (2013) 4434–4441.

[20] X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M.S. Dresselhaus, J. Kong, Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Letters 14 (2014), 464–472.

[21] H. Li, H. Wu, S. Yuan, H. Qian, Synthesis and Characterization of Vertically Standing MoS2 Nanosheets. Scientific Reports 6 (2016), 21171.

[22] S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M. Ajayan, J. Lou, Vapour Phase Growth and Grain Boundary Structure of Molybdenum Disulphide Atomic Layers. Nature Materials 12 (2013), 754–759.

[23] S.-L. Shang, G. Lindwall, Y. Wang, J.M. Redwing, T. Anderson, Z.-K. Liu, Lateral Versus Vertical Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Thermodynamic Insight into MoS2. Nano Letters 16 (2016), 5742–5750.

[24] A. Pisoni, J. Jacimovic, R. Gaál, B. Náfrádi, H. Berger, Z. Révay, L. Forró, Anisotropic Transport Properties of Tungsten Disulfide. Scripta Materialia 114 (2016), 48–50.

[25] A. Pisoni, J. Jacimovic, O.S. Barišić, A. Walter, B. Náfrádi, P. Bugnon, A. Magrez, H. Berger, Z. Revay, L. Forró, The Role of Transport Agents in MoS2 Single Crystals. The Journal of Physical Chemistry C 119 (2015), 3918–3922.

[26] F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, B.T. Jonker, Chemical Vapor Sensing with Monolayer MoS2. Nano Letters 13 (2013), 668–673.

[27] H. Li, M. Huang, G. Cao, Markedly Different Adsorption Behaviors of Gas Molecules on Defective Monolayer MoS2: A First-Principles Study. Physical Chemistry Chemical Physics 18 (2016), 15110–15117.

[28] H.I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J.R. Long, C.J. Chang, A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation. Science 335 (2012), 698–702.

[29] N. Singh, G. Jabbour, U. Schwingenschlögl, Optical and Photocatalytic Properties of Two-Dimensional MoS2. The European Physical Journal B 85 (2012), 392.

[30] D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters 13 (2013), 6222–6227.

[31] V.M.L. Whiffen, K.J. Smith, Hydrodeoxygenation of 4-Methylphenol over Unsupported MoP, MoS2, and MoOx Catalysts. Energy Fuels 24 (2010), 4728–4737.

[32] S. Kim, A. Konar, W.-S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, et al. High-Mobility and Low-Power Thin-Film Transistors Based on Multilayer MoS2 Crystals. Nature Communications 3 (2012).

[33] X. Geng, W. Wu, N. Li, W. Sun, J. Armstrong, A. Al‐hilo, M. Brozak, J. Cui, T. Chen, Three-Dimensional Structures of MoS2 Nanosheets with Ultrahigh Hydrogen Evolution Reaction in Water Reduction. Advanced Functional Materials 24 (2014), 6123–6129.

[34] D. Kong, H. Wang, J.J. Cha, M. Pasta, K. J. Koski, J. Yao, Y. Cui, Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Letters 13 (2013), 1341–1347.

[35] V. Shokhen, Y. Miroshnikov, G. Gershinsky, N. Gotlib, C. Stern, D. Naveh, D. Zitoun, On the Impact of Vertical Alignment of MoS2 for Efficient Lithium Storage. Scientific Report 7 (2017), 3280.

[36] X. Xie, T. Makaryan, M. Zhao, K. Aken, L.V.Y. Gogotsi, G. Wang, MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium-Ion Batteries. Advanced Energy Materials 6(2016), 1502161.

 [37] S. Inguva1, J.H. Cai, C. Hu1, J. Wu, Y. Lu1, X. Liu, Effect of substrate angle on the growth of MoS2 vertical nanosheets using a one-step chemical vapor deposition, Materials Research Express 5 (2018), 075026.

[38] G. Yang, Y. Gu, P. Yan, J. Wang, J. Xue, X. Zhang, N. Lu, G. Chen, Chemical Vapor Deposition Growth of Vertical MoS2 Nanosheets on p-GaN Nanorods for Photodetector Application. ACS Applied Materials Interfaces 11 (2019), 8453–8460.

[39] T. Kodas, Handbook of Chemical Vapor Deposition (CVD), Principles, Technology, and Applications. By Hugh O. Pierson, Noyes, Park Ridge, NJ, 1992. 436 Pp., Hardback, $ 68, ISBN 0‐8155‐1300‐3. Advanced. Materials. 1993, 5, 401–402.

[40] L. Yang, X. Cui, J. Zhang, K. Wang, M. Shen, S. Zeng, S.A. Dayeh, L. Feng, B. Xiang, Lattice Strain Effects on the Optical Properties of MoS2 Nanosheets. Scientific Report 4 (2014), 5649.

[41] L. Jiang, S. Zhang, S.A. Kulinich, X. Song, J. Zhu, X. Wang, H. Zeng, Optimizing Hybridization of 1T and 2H Phases in MoS2 Monolayers to Improve Capacitances of Supercapacitors, Materials Research Letters 3 (2015), 177–183.

[42] P. Joensen, E.D. Crozier, N. Alberding, R.F. Frindt, A study of single-layer and restacked MoS, by x-ray diffraction and x-ray absorption spectroscopy, Journal of Physics C: Solid State Physics 20 (1987), 4043-4053.

[43] Z. Deng, Y. Hu, D. Ren, S. Lin, H. Jiang, C. Li, Reciprocal Hybridization of MoO2 Nanoparticles and Few-Layer MoS2 for Stable Lithium-Ion Batteries. Chemical Communications 51 (2015), 13838–13841.

[44] B.J. Carey, J.Z. Ou, R.M. Clark, K.J. Berean, A. Zavabeti, A.S.R. Chesman, S.P. Russo, D.W.M. Lau, Z.-Q. Xu, Q. Bao, et al. Wafer-Scale Two-Dimensional Semiconductors from Printed Oxide Skin of Liquid Metals. Nature Communication 8 (2017), 14482

[45] C. Rice, R.J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, K.S. Novoselov, Raman-Scattering Measurements and First-Principles Calculations of Strain-Induced Phonon Shifts in Monolayer MoS2. Physical review B 87(2013), 081307.

[46] A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S.J. van der Zant, G.A. Steele, Local Strain Engineering in Atomically Thin MoS2, Nano Letters 13 (2013), 5361-5366.

[47] C.K. Tan, W.C. Wong, S.M. Ng, H.F. Wong, C.W. Leung, C.L. Mak, Raman studies of MoS2 under strain at different uniaxial directions, Vacuum 153 (2018) 274–276.