حسگری گاز مونوکسیدکربن توسط سیلیسین دارای تهی‌جای نقطه‌ای با استفاده از شبیه‌سازی فوق سریع طیف‌سنجی اتلاف انرژی الکترون

نوع مقاله: مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، دانشکده علوم، دانشگاه آزاد اسلامی واحد تهران مرکز، تهران، ایران

2 دانشکدة فیزیک، دانشگاه صنعتی اصفهان ، اصفهان،8415683111، ایران

چکیده

تقاضای روز افزون برای حسگرهای بسیار حساس، گزینش‌پذیر، مقرون به صرفه، کم مصرف، پایدار و قابل حمل موجب تحقیقات گسترده‌ای برای به کارگیری مواد دو بعدی شده است. مواد دو بعدی امروزه به دلیل شفافیت نوری خوب، انعطاف پذیری بالا، قدرت مکانیکی عالی و همچنین خواص الکتریکی ویژه‌ی الکترونیکی و اپتوالکترونیکی، برای ساخت حسگرهای گازی بسیار مناسب هستند. در این مقاله خواص الکترونی، اپتیکی و مغناطیسی ابریاخته سیلیسین در حضور گاز مونوکسیدکربن در غیاب نقص‌های شبکه، و حضور تهی‌جای‌ها با استفاده از نظریه تابعی چگالی و نظریه تابعی چگالی وابسته به زمان بررسی شده است. با توجه به بررسی‌های انجام شده در می‌یابیم که خواص الکترونی و مغناطیسی سیستم مورد بررسی در اثر جذب مولکول گازی و حضور تهی‌جای‌‎ها تغییر می‌کند. در این جا طیف سنجی اتلاف انرژی الکترون، سیلیسین خالص، سیلیسین در حضور مولکول گازی و سیلیسین با حضور تهی‌جای‌ها بررسی شده است. که طیف مرتبط به آن‌ها نشان می‌دهد که قله پلاسمونی (نوسانات دسته جمعی) تغییر می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Gas molecule sensing (CO) with defect silicene monolayer: a turbo EELS study

نویسندگان [English]

  • Nasim Hadian Jaz 1
  • Ismaeil Abdolhosseini Sarsari 2
  • Naser Zare Dehnavi 1
1 Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Isfahan University of Technology
چکیده [English]

Increasing demand for highly sensitive, selective, affordable, low-consumption, durable and portable sensors has led to extensive research into the use of two-dimensional materials. Two-dimensional materials are very suitable for making gaseous sensors due to good optical clarity, high flexibility, high mechanical strength, and special electronic and optoelectronic properties. In this paper, the electronic, optical and magnetic properties of pure and defected silicene monolayer in the presence of carbon monoxide gas has been studied using first principles calculations based on density functional theory and time-dependent density functional theory. According to the investigations, we find that the optical and electronic properties of the system are altered by the absorption of the gas molecule and the vacancy defect. Here, the electron energy loss spectroscopy for pure silicene monolayer in the presence of gaseous molecule and vacancies defect have been investigated. The spectrum associated with them indicates that the plasma peak changes (Collective modes).

کلیدواژه‌ها [English]

  • Two-dimensional materials
  • Time-dependent density functional theory
  • Collective modes
  • Electron energy loss spectroscopy
[1] S. Mahajan, Pollution control in process industries, Tata McGraw-Hill Education, (1985).

[2] K. Zakrzewska, Mixed oxides as gas sensors, Thin Solid Films 391 (2001) 229–238. https://doi.org/10.1016/S0040-6090(01)00987-7

 [3] M. Penza, G. Cassano, P. Aversa, F. Antolini, A. Cusano, A. Cutolo, M. Giordano, L. Nicolais, Alcohol detection using carbon nanotubes acoustic and optical sensors, Applied Physics Letters 85 12 (2004) 2379–2381. https://doi.org/10.1063/1.1784872

[4] H. Bai, G. Shi, Gas sensors based on conducting polymers, Sensors 7 3, (2007) 267–307. https://doi.org/10.3390/s7030267

[5] S. Kulinyi, D. Brandszájsz, H. Amine, M. Ádám, P. Fürjes, I. Bársony, C. Dücso. Olfactorydetection of methane, propane, butane and hexane using conventional transmitter norms.Sens. Actuators B 111 (2005) 286–292. https://doi.org/10.1016/j.snb.2005.06.068

[6] L. Fraiwan, K. Lweesy, A. Bani-Salma, N Mani, A wireless home safety gas leakage detection system. Sharjah, United Arab Emirates, IEEE (2011) 11–14. https://doi.org/10.1109/MECBME.2011.5752053

[7] R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Arsenene nanoribbons for sensing nh3 and ph3 gas molecules–a first-principles perspective, Applied Surface Science 469 (2019) 173–180. https://doi.org/10.1016/j.apsusc.2018.11.003

[8]. P. Snehha, V. Nagarajan, R. Chandiramouli, Novel bismuthene nanotubes to detect nh3, no2 and ph3 gas molecules–a first-principles insight, Chemical Physics Letters 712 (2018) 102–111. https://doi.org/10.1016/j.cplett.2018.09.068

[9] U. Treske, F. Ortmann, B. Oetzel, K. Hannewald, F. Bechstedt, Electronic and transport properties of graphene nanoribbons, physica status solidi (a) 207 2 (2010) 304-308.  https://doi.org/10.1002/pssa.200982445

[10] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature materials 63 (2007) 183-191. https://doi.org/10.1142/9789814287005_0002

[11] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications 146 (2008) 351-355. https://doi.org/10.1016/j.ssc.2008.02.024

[12]L. Yang, C.H. Park, Y.W. Son, M.L. Cohen, S.G. Louie, Quasiparticle energies and band gaps in graphene nanoribbons, Physical Review Letters 9918(2007). https://doi.org/10.1103/PhysRevLett.99.186801

 [13] B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial growth of a silicene sheet, Applied Physics Letters 97 (2010) 223109.  https://doi.org/10.1063/1.3524215

[14] P. Vogt, P.D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. Asensio, A. Resta, B. Ealet, G.L. Lay, Silicene: compelling experimental evidence for graphenelike twodimensional silicon, Physical review letters 108 (2012) 155501.https://doi.org/10.1103/PhysRevLett.108.155501

[15] J.Y. Wu, S.C. Chen, M.F. Lin, Temperaturedependent Coulomb excitations in silicene, New Journal of Physics 16 (2014) 125002. https://doi.org/10.1088/13672630/16/12/125002

[16] N.D. Drummond, V. Zolyomi, V.I. Fal'Ko, Electrically tunable band gap in silicene, Physical Review B 85 (2012) 075423. https://doi.org/10.1103/PhysRevB.85.075423

[17] J. Kushmerick, K. Kelly, H.-P. Rust, N. Halas, P. Weiss, Observations of anisotropic electron scattering on graphite with a lowtemperature scanning tunneling microscope, The Journal of Physical Chemistry B 103 (1999) 1619-1622.  https://doi.org/10.1021/jp983648v

[18] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers, Nature 430 (2004) 870-873. https://doi.org/10.1038/nature02817

[19] V.M. Pereira, F. Guinea, J.L. Dos Santos, N. Peres, A.C. Neto, Erratum: Disorder Induced Localized States in Graphene, Physical Review Letters 96 (2006) 036801/1-036801/4. https://doi.org/10.1103/PhysRevLett.96.0.036801

[20] D. Sholl, J.A. Steckel, Density functional theory: a practical introduction, John Wiley & Sons (2011).

[21] Marques, M.A., et al., Time-dependent density functional theory, Springer Science & Business Media 706 (2006).

[22] P. Giannozzi, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter 2139(2009)395502. https://doi.org/10.1088/09538984/21/39/395502

 [23] O.B. Malcıoglu, R. Gebauer, D. Rocca, S. Baroni, turboTDDFT – a code for the simulation of molecular spectra using the Liouville-Lanczos approach to timedependent density-functional perturbation theory, Computer Physics Communications, (2010) 1744-1754. https://doi.org/10.1016/j.cpc.2011.04.020

[24] J P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77 (1996) 38653868. 10.1103/physrevlett.77.3865

[25] S. Lebegue and O. Eriksson, Physical Review B 79, 115409 (2009). https://doi.org/10.1103/PhysRevB.79.115409

 [26] J W.Feng, Y.J. Liu, H.X. Wang, J.X. Zhao, Q.H. Cai, & X.Z Wang, Gas adsorption on silicene: a theoretical study. Computational Materials Science 87 (2014) 218-226. https://doi.org/10.1016/j.commatsci.2014.02.025