Design and Analysis of Plasmonic Switch at mid-IR Wavelengths using Graphene Nano-Ribbons

Fatemeh Moradiani1, Mahmood Seifouri1,*, Kambiz Abedi2

1Department of Electronics, Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

2Departement of Electronics, Faculty of Electrical and computer Engineering, Shahid Beheshti University, Tehran, Iran

Received: 04.07.2017 Final revised: 26.11.2017 Accepted: 30.12.2017

Abstract

Taking advantage of the chemical potential (μ_c) of one and multi-layers of graphene nano-ribbons, we designed and analyzed the performance of plasmonic switches at mid-IR wavelengths. By slightly varying the chemical potential of graphene, significant resonance shift ($\Delta \lambda$) and modulation depth (MD) are achieved. Using the finite element method, our numerical simulations show that a plasmonic switch, made up of hexagonal boron nitride (hBN)/Graphene, has relatively large MD and wavelength shifts with N=6, and μ_c varying from 0.3eV to 0.4eV, 14 dB and 2.8µm. The proposed structure is useful for research on compact and largely tunable mid-infrared photonic devices in order to realize on-chip CMOS optoelectronic systems.

Keywords: Chemical potential, Graphene nano-ribbon, Plasmonic, Modulation depth, Wavelength shift, Switch.