Theoretical study of electronic conductance in a quantum system with two chain model leads

Document Type : Full length research Paper

Authors

Abstract

In this study, we investigate the electron transport properties of a quantum device- with square lattice structure- attached to the two metallic leads. Based on the tight-binding model and Green’s function method, we calculate the electrical conductance of the system in the strong coupling regime, numerically. Our results show that with changing the width of the system and applying a uniform magnetic field, the transport properties of the system can be controlled. Also, by introducing a disordered structure in the system (vacancy defects), one can see a semiconducting behavior. By controlling parameters such as the system size, value of input flux and disorder, semimetal - and semiconductor - metal phase transitions occur in the system. The results of this research could have many applications in designing of nanoelectronic devices.

Keywords