[1]. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd. Academic, London (1986).
[2]. R. Evans, D. Henderson, Fundamentals of inhomogeneous fluids, New York: Marcel Dekker (1992).
[3]. R.G. Parr, W. Yang, Density-functional theory of atoms and molecules, Oxford University Press )1989(.
[4]. G. Rickayzen, P. Kalpaxis, E. Chacon, A self consistent approach to a density functional for homogeneous fluids, The Journal of Chemical Physics 101 (1994) 7963-7970.
[5]. C.F. Tejero, J.A. Cuesta, Hard-sphere and hard-disk freezing from the differential formulation of the generalized effective liquid approximation, Physical Review E 47 (1993) 490.
[6]. A. González, J.A. White, Generating function density functional theory: free-energy functionals and direct correlation functions for hard-spheres, Physica A: Statistical Mechanics and its Applications 296 (2001) 347-363.
[7]. G. Rickayzen, A. Augousti, Integral equations and the pressure at the liquid-solid interface, Molecular Physics 52 (1984) 1355-1366.
[8]. M. Moradi, M.K. Tehrani, Weighted density functional theory of spherically inhomogeneous hard spheres, Physical Review E 63(2001) 021202.
[9]. P. Tarazona, Free-energy density functional for hard spheres, Physical Review A 31(1985) 2672.
[10]. S.F. Taghizadeh, S. Ghanbar, Z. Sazeshi, The study of the structural and thermodynamic properties of two-dimensional fluid with disc-shape molecules by Lenard-jonard potential model, Journal of Research on Many-Body Systems 2 (2012) 1-7.
[11]. I.G. Tóth, L. Gránásy, G. Tegze, Nonlinear hydrodynamic theory of crystallization, Journal of Physics: Condensed Matter 26 (2014) 055001.
[12]. C. Rascón, L. Mederos, G. Navascués, Solid to solid isostructural transition in the hard sphere/attractive Yukawa system, The Journal of Chemical Physics 103(1995) 9795-9799.
[13]. M. Baus,The present status of the density-functional theory of the liquid-solid transition, Journal of Physics. Condensed Matter 2 (1990) 2111-2126.
[14]. W. Yang, Gradient correction in Thomas-Fermi theory, Physical Review A 34(1986): 4575.
[15]. A.R. Yasemina, H. Akbarzadeh, M.R. Mohammadizadeh, Iranian Annual Physics Conference (1997) 415.
[16]. C. Ebner, H.R. Krishnamurthy, Rahul Pandit, Density-functional theory for classical fluids and solids, Physical Review A 43 (1991) 4355.
[17]. T.V. Ramakrishnan, M. Yussouff. Theory of the liquid-solid transition, Solid State Communications 21 4 (1977) 389-392.
[18]. A.D.J. Haymet, D.W. Oxtoby, A molecular theory for the solid–liquid interface, The Journal of Chemical Physics 74 (1981) 2559-2565.
[19]. J.L. Barrat, J.P. Hansen, G. Pastore, E. M. Waisman, Density functional theory of soft sphere freezing, The Journal of Chemical Physics 86 (1987) 6360-6365
[20]. W.A. Curtin, Freezing in the density functional approach: Effect of third order contributions, The Journal of Chemical Physics 88 (1988) 7050-7058
[21]. P. Tarazona, A density functional theory of melting, Molecular physics 52 (1984) 81-96.
[22]. M. Moradi, H. Shahri, Equation of state and freezing of gmsa hard spheres, International Journal of Modern Physics B 17 (2003) 6057-6065.
[23]. V.B. Warshavsky, X. Song, Calculations of free energies in liquid and solid phases: Fundamental measure density-functional approach, Physical Review E 69 (2004) 061113.
[24]. V.B. Warshavsky, X. Song, Fundamental-measure density functional theory study of the crystal-melt interface of the hard sphere system, Physical Review E 73(2006) 031110.
[25]. W.A. Curtin, N.W. Ashcroft, Weighted-density-functional theory of inhomogeneous liquids and the freezing transition, Physical Review A 32 (1985) 2909.
[26]. W.A Curtin, N.W. Ashcroft, Density-functional theory and freezing of simple liquids, Physical Review Letters 56 (1986) 2775.
[27]. W.A. Curtin,Density-functional theory of the solid-liquid interface, Physical Review Letters 59(1987) 1228.
[28]. W.A. Curtin, K. Runge, Weighted-density-functional and simulation studies of the bcc hard-sphere solid, Physical Review A 35 (1987) 4755.
[29]. A.R. Denton, N.W. Ashcroft, Modified weighted-density-functional theory of nonuniform classical liquids, Physical Review A 39 (1989) 4701.
[30]. D.W. Marr, A.P. Gast, Planar density-functional approach to the solid-fluid interface of simple liquids, Physical Review E 47 (1993) 1212.
[31]. A. Suematsu, A. Yoshimori, M. Saiki, J. Matsui, T. Odagaki, Solid phase stability of a double-minimum interaction potential system, The Journal of chemical physics 140n (2014) 244501.
[32]. M. Oettel, S. Dorosz, M. Berghoff, B. Nestler, T. Schilling, Description of hard-sphere crystals and crystal-fluid interfaces: A comparison between density functional approaches and a phase-field crystal model, Physical Review E 86 (2012) 021404.
[33]. V. Ogarko, N. Rivas, S. Luding, Communication: Structure characterization of hard sphere packings in amorphous and crystalline states, The Journal of Chemical Physics 140 (2014) 211102.
[34]. E. Thiele, Equation of state for hard spheres, The Journal of Chemical Physics 39 (1963) 474-479.
[35]. M.S. Wertheim, Exact solution of the Percus-Yevick integral equation for hard spheres, Physical Review Letters 10, (1963) 321-323.
[36]. R. Roth, R. Evans, A. Lang, G. Kahl, Fundamental measure theory for hard-sphere mixtures revisited: the White Bear version, Journal of Physics: Condensed Matter 14 (2002) 12063.
[37]. Z. Tang, L.E. Scriven, H.T. Davis, Density functional perturbation theory of inhomogeneous simple fluids, The Journal of chemical physics 95 (1991) 2659-2668.
[38]. A.R. Denton, N.W. Ashcroft, Weighted-density-functional theory of nonuniform fluid mixtures: Application to the structure of binary hard-sphere mixtures near a hard wall, Physical Review A 44(1991) 8242.
[39].W.G. Hoover, F.H. Ree, Melting transition and communal entropy for hard spheres, The Journal of Chemical Physics 49 (1968) 3609-3617.
[40]. P. Tarazona, Free-energy density functional for hard spheres, Physical Review A 31 4 (1985) 2672.
[41]. F. Igloi, J. Hafner, Density functional theory of freezing with reference liquid, Journal of Physics C: Solid State Physics 19 (1986) 5799.
[42]. G.L. Jones, U. Mohanty, A density functional-variational treatment of the hard sphere transition, Molecular Physics 54 (1985) 1241-1252.
[43] A.D.J. Haymet, A molecular theory for the freezing of hard spheres, The Journal of Chemical Physics 78 (1983) 4641-4648.
[44] J.L. Colot, M. Baus, The freezing of hard spheres: II. A search for structural (fcc-hcp) phase transitions, Molecular Physics 56 (1985) 807-824.