[1] S.V. Gaponenko, Introduction to nanophotonics, Cambridge University Press, (2010).
[2] S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, A gallium nitride single-photon source operating at 200 K, Nature Materials 5 (2006) 887-892.
[3] J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, A highly efficient single-photon source based on a quantum dot in a photonic nanowire, Nature Photonics 4 (2010) 174-177.
[4] G. Konstantatos, E.H. Sargent, Nanostructured materials for photon detection, Nature Nanotechnology 5 (2010) 391-400.
[5] J.P. Clifford, G. Konstantatos, K.W. Johnston, S. Hoogland, L. Levina, E.H. Sargent, Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors, Nature Nanotechnology 4 (2009) 40-44.
[6] M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa, Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system, Nature Physics 6 (2010) 279-283.
[7] K. Tachibana, T. Someya, Y. Arakawa, Growth of InGaN self-assembled quantum dots and their application to lasers, Journal of Selected Topics in Quantum Electronics (2000) 475-481.
[8] L. Ji, Y.-K. Su, S.-J. Chang, S. Tsai, S. Hung, R. Chuang, T. Fang, T. Tsai, Growth of InGaN self-assembled quantum dots and their application to photodiodes, Journal of Vacuum Science & Technology A 22 (2004) 792-795.
[9] L. Sun, J.J. Choi, D. Stachnik, A.C. Bartnik, B.-R. Hyun, G.G. Malliaras, T. Hanrath, F.W. Wise, Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control, Nature Nanotechnology 7 (2012) 369-373.
[10] V.M. Aroutiounian, S. Petrosyan, A. Khachatryan, K.J. Touryan, Quantum dot solar cells, in: International Symposium on Optical Science and Technology, International Society for Optics and Photonics (2001) 38-45.
[11] E.H. Sargent, Colloidal quantum dot solar cells, Nature Photonics 6 (2012) 133-135.
[12] D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots, Physical Review 57.1 (1998) p 120.
[13] A. Imamog, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Quantum information processing using quantum dot spins and cavity QED, Physical Review Letters 83 (1999) 4204.
[14] H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nature Materials 9 (2010) 205-213.
[15] W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities, Physical Review Letters 96 (2006) 117401.
[16] E. Fermi, Quantum theory of radiation, Reviews of Modern Physics 4 (1932) 87-132.
[17] E.M. Purcell, Spontaneous emission probabilities at radio frequencies, Physical Review 69 (1946) 681.
[18] K. Srinivasan, M. Borselli, O. Painter, A. Stintz, S. Krishna, Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots, Optics Express 14 (2006) 1094-1105.
[19] D. Vernooy, V.S. Ilchenko, H. Mabuchi, E. Streed, H. Kimble, High-Q measurements of fused-silica microspheres in the near infrared, Optics Letters 23 (1998) 247-249.
[20] D. Armani, T. Kippenberg, S. Spillane, K. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature 421 (2003) 925-928.
[21] K.J. Vahala, Optical microcavities, Nature 424 (2003) 839-846.
[22] P. Lodahl, A.F. Van Driel, I.S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W.L. Vos, Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals, Nature 430.7000 (2004) 654-657.
[23] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, D. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432 (2004) 200-203.
[24] M. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, M. Kim, Quantum plasmonics, Nature Physics 9 (2013) 329-340.
[25] A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, M. Lukin, Generation of single optical plasmons in metallic nanowires coupled to quantum dots, Nature 450 (2007) 402-406.
[26] S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Physical Review Letters 97 (2006) 017402.
[27] M. Kuttge, F.J. García de Abajo, A. Polman, Ultrasmall mode volume plasmonic nanodisk resonators, Nano Letters 10 (2009) 1537-1541.
[28] E.J.R. Vesseur, F.J.G. de Abajo, A. Polman, Broadband Purcell enhancement in plasmonic ring cavities, Physical Review B 82 (2010) 165419.
[29] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nature Photonics 3 (2009) 654-657.
[30] L. Rogobete, F. Kaminski, M. Agio, V. Sandoghdar, Design of plasmonic nanoantennae for enhancing spontaneous emission, Optics Letters 32 (2007) 1623-1625.
[31] A. Mohammadi, V. Sandoghdar, M. Agio, Gold nanorods and nanospheroids for enhancing spontaneous emission, New Journal of Physics 10 (2008) 105015.
[32] S. Adachi, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information, Springer Science & Business Media, 1999.
[33] C. Adelmann, J. Simon, G. Feuillet, N. Pelekanos, B. Daudin, G. Fishman, Self-assembled InGaN quantum dots grown by molecular-beam epitaxy, Applied Physics Letters 76 (2000) 1570-1572.
[34] Y.-K. Ee, H. Zhao, R.A. Arif, M. Jamil, N. Tansu, Self-assembled InGaN quantum dots on GaN emitting at 520nm grown by metalorganic vapor-phase epitaxy, Journal of Crystal Growth 310 (2008) 2320-2325.
[35] J. Zhang, M. Hao, P. Li, S. Chua, InGaN self-assembled quantum dots grown by metalorganic chemical-vapor deposition with indium as the antisurfactant, Applied Physics Letters 80 (2002) 485-487.
[36] R. Mohammadi, A. Unger, H. Elmers, G. Schönhense, M. Shushtari, M. Kreiter, Manipulating near field polarization beyond the diffraction limit, Applied Physics B 104 (2011) 65-71.
[37] A.M. Khasraghi, S. Shojaei, A.S. Vala, M. Kalafi, Coupling effects in a photonic crystal microcavity with embedded semiconductor quantum dot, Physica E: Low-dimensional Systems and Nanostructures 47 (2013) 17-24.
[38] O. Painter, J. Vučkovič, A. Scherer, Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab, Journal of the Optical Society of America B 16 (1999) 275-285.
[39] P.B. Johnson, R.-W. Christy, Optical constants of the noble metals, Physical Review B 6 (1972) 4370.
[40] J.H. Choi, A. Zoulkarneev, S.I. Kim, C.W. Baik, M.H. Yang, S.S. Park, H. Suh, U.J. Kim, H.B. Son, J.S. Lee, Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates, Nature Photonics 5 (2011) 763-769.