An investigation of molar ratio acid citric on the structure, magnetic and dielectric properties SrNi2Fe16O27 nanostructure

Document Type : Full length research Paper

Authors

1 Student

2 Remeber faculty

Abstract

In this paper, W-type hexaferrites nanostructure with SrNi2Fe16O27 composition with molar ratio of acid citric 1, 1.5 and 2 were prepared by sol-gel auto combustion method. First, the gel of samples was ignited at 300 oC and powders were annealed at 900, 1000 and 1100 oC temperatures. Nanostructures of papered were characterized by X-ray diffraction pattern devices (XRD), Field emission scanning electron microscope (FESEM), Fourier transform infrared spectrophotometer (FT-IR) and vibrating sample magnetometer (VSM). The X-ray diffraction pattern of samples show that in mole ratio of 1 pure phase was formed at 1000 oC and by increasing the molar ratio the temperature for formed SrNi2Fe16O27 phase increased. The results of field emission scanning electron microscope showed that in different molar ratios, various morphology is obtained and by increasing the molar ratio of citric acid, the size of the particles increases. The peaks of FT-IR absorption samples in rang of 430-590 cm-1 and 550-590 cm-1 is corresponding to tetrahedral and octahedral sites in the ferrites. Hysteresis curve of the samples showed that by increasing the molar ratio of citric acid, the specific saturation magnetization increasing and also the coercivity decreases.

Keywords


[1] M. Anis-ur-Rehman, G. Asghar, Variation in structural and dielectric properties of co-precipitated nanoparticles strontium ferrites due to value of pH,Journal of Alloys and Compound 509 (2011) 435-439.
[2] T. Nakamura, Complex permeability of polycrystalline hexagonal ferrites, IEEE Transactions on Magnetics 36 (2000) 3415–3417.
[3] R. Valenzuela, Magnetic Ceramics, Cambridge University Press, (1994).
[4] R.C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Journal of Progress in Materials Science 57 (2012) 1191-1334.
[5] R.C. Pullar, Multiferroic and MagnetoelectricHexagonal Ferrites, Mesoscopic Phenomena in Multifunctional Materials. Springer Berlin Heidelberg (2014) 159-200.‏
[6] م. صلواتی، ز. فرشته، نانوشیمی، انتشارات علم و دانش، (1388).
[7] ع. سیم چی، آشنایی با نانوذرات: خواص، روش‌های تولید و کاربرد، انتشارات علمی دانشگاه صنعتی شریف، تهران، (1392).
[8] M.J. Iqbal, M.N. Ashiq, I.H. Gul, Physical, electrical and dielectric properties of Ca-substitute dstrontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method, Journal of Magnetism and Magnetic Materials 322 (2010) 1720-1726.
[9] Sh. Akbara, S.K. Hasanaina, N. Azmatb, M. Nadeemc, Synthesis of Fe2O3 nanoparticles by new Sol-Gel method and their structural and magnetic characterizations, arXiv preprint cond-mat 0408480 (2004).
[10] S.E. MousaviGhahfarokhi, M. ZargarShoushtari, Structural and physical properties of Cd-doped Bi1.64Pb0.36Sr2Ca2-xCdxCu3Oy superconductor, Physica B 405 (2010) 4643-4649.
[11] ه. عربی، ح. شیرین زاده، ن. خلیلی مقدم، مطالعه تأثیر مقدار pH برخواص ساختاری و مغناطیسی فریت منیزیم، مجلة پژوهش سیستم‌های بس ذره‌ای، (1390) 9-20.
[12] F. Aen, A. Mukhtar, M.U. Rana, The role of Ga substitution on magnetic and electromagnetic properties of nano-sized W-type hexagonal ferrites, Current Applied Physics 13 (2013) 41-46.‏
[13] A.B. Salunkhe, Combustion synthesis of cobalt ferrite nanoparticles—Influence of fuel to oxidizer ratio, Journal of Alloys and Compounds, 514 (2012) 91-96.
[14] K. Takatori, T. Tani, N. Watanbe, N. Kamiya, Preparation and Characterization of Nano- Structured Ceramic Powders Synthesized by Emulsion Combustion Method, Journal of Nanoparticle Research 1 (1999) 197-204.
[15] Y. Li, L. Xue, L. Fan, Y. Yan, The effect of citric acid to metal nitrates molar ratio on sol–gel combustion synthesis of nanocrystallineLaMnO3 powders, Journal of Alloys and Compounds 478 (2009) 493-497.
 [16] L. Junliang, Z. Wei, G. Cuijing, Z. Yanwei, Synthesis and magnetic properties of quasi single domain M-type barium hexaferrite powders via sol–gel auto-combustion: Effects of pH and the ratio of citric acid to metal ions (CA/M), Journal of Alloys and Compounds479 (2009) 863-869.
[17] G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnet, IEEE Transactions Magnetics 36 (1990) 1397–1402.
[18] I. Khan, I. Sadiq, M.N. Ashiq, Role of Ce–Mn substitution on structural, electrical and magnetic properties of W-type strontium hexaferrites, Journal of Alloys and Compounds 509 (2011) 8042-8046.
[19] م. صالح زاده، ع. قاسمی، غ. گردانی، ساخت نانوذرات هگزافریت استرانسیوم نوع-W به‌روش هم‌رسوبی و تأثیر دما بر خواص ساختاری و مغناطیسی آن، دومین همایش بین‌المللی و هشتمین همایش مشترک انجمن مهندسی متالوژی ایران و انجمن علمی ریخته گیری ایران، 1392.
[20] M.N. Ashiq, M.J. Iqbal, Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in High density recording media and microwave devices, Journal of Magnetism and Magnetic Materials 324 (2012),15-19.‏
[21] C.C. Chauhan, R.B. Jotania, Microstructural, thermal, magnetic and dielectric properties of cobalt doped barium calcium hexaferrite prepared by a sol-gel route, International Journal of Advanced Engineering Technology3 (2012) 135-139.
[22] A. majeed, M. Inaam, Dielectric Behavior of Nickel-Zinc Dopped Hexagonal W-type Barium Ferrite, Journal of Al-Nahrain University 15 (2012) 102-105.
[23] E. Ata, A. Abo, Dielectric and magnetic permeability behavior of BaCo2− x NixFe16O27 W-type hexaferrites, Journal of Magnetism and Magnetic Materials 204 (1999) 36-44.