محاسبات ابتدا به ساکن خواص ساختاری،گذار فاز،خواص فونونی وخواص ترمودینامیکی AlAs

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 دانشگاه آزاد اسلامی واحد اردبیل

2 دانشگاه آزاد اسلامی واحد رشت

چکیده

در این مقاله خواص ساختاری، گذار فاز وخواص فونونی و ترمودینامیکی AlAs مورد بررسی قرار گرفت. با کمک برنامه گیبس2 و مدل شبه هماهنگ دبای- اینشتین، داده‌های انرژی- حجم حاصل از بسته‌ی محاسباتی کوانتوم اسپرسو با معادلة حالت خطی بیرچ- مورناگون برازش داده شد ودرنتیجه ثابت شبکه، مدول کپه‌ای استاتیک ومشتق آن B0 برای سه فاز B3 و B8 وB1 به دست آمد. گذارهای فاز از فاز B3 به B8 ونیز از فاز B3به B1به ترتیب برابر GPa9/7 وGPa2/11 به دست آمدند که با نتایج نظری و تجربی همخوانی خوبی دارند. به‌علاوه خواص فونونی فاز B3 با داده‌های تجربی مقایسه شد، که به‌ ویژه در راستای گاما که مبنای محاسبات ترمودینامیکی است نتایج حاصل سازگاری خوبی با نتایج تجربی نشان می‌دهد. همچنین با بررسی نمودار ظرفیت گرمایی در حجم ثابت و داده های ظرفیت گرمایی در فشار ثابت برحسب دما برای فاز B3، سازگاری بسیار خوب نتایج با دیگر داده‌های نظری و تجربی نشان داده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Ab initio calculations of structural, phase transition, phonon and thermodynamic properties of AlAs

نویسنده [English]

  • ali fazeli kisomi 1
1
2
چکیده [English]

This paper is an attempt to investigate the structural properties, phase transition, and thermodynamic and phonon properties of AlAs. Quasi-harmonic Debye- Einstein model was used to obtain lattice constant and static Bulk modulus B0 for B3, B8 and B1phases. These results showed good consistency with experimental results and other theoretical data. Afterwards, the phase transitions of B3 to B1 and B3 to B8 obtained were equal to 7.9 GPa and 11.2 GPa respectively, which also indicated a good consistency with the theoretical and experimental results. In addition, phonon properties of B3 phase were compared with experimental data, and the results demonstrated a good consistency with experimental results especially in the gamma point that is the basis of thermodynamic calculations. Furthermore, the diagrams of heat capacity at constant volume and heat capacity at constant pressure were investigated in terms of temperature for B3 phase, and the results showed their significant consistency with theoretical and experimental results.

کلیدواژه‌ها [English]

  • quasi-harmonic Debye-Einstein model
  • Thermodynamic properties
  • Phase transition
  • Aluminum Arsenide
[1] G.C. Liu, Z.W. Lu, B.M. Klein, Pressure-induced phase transformations in AlAs: Comparison between ab initio theory and Experiment, Physical Review B51(1995) 5678-5682.
[2] R.G. Greene, H. Luo, T. Li, A.L. Ruoff, Phase transformation of AlAs to NiAs structure at high Pressure, Physical Review Letters72 (1994) 2045-2049.
[3] A. Onodera, M. Mimasaka, I. Sakamoto, J. Okumura, K. Sakamoto, Sh. Uehara, K. Takemura, O. Shimomura, T. Ohtani, Y. Fujii, Structural and Electrical Properties Of NiAs-type Compounds Under Pressure Journal Of Physics And Chemistry Of Solids 60 (1999) 167-179.
[4] N. Munjal, G. sharma, V. Vyas, K. B. Joshi and B. K. Sharma, Ab-initio Study of Structural and Electronic Properties of AlAs Philosophical Magazine192 (2012) 3101-3112.
[5] L. Xing-Xiu, T. Xiao-Ma, C. Hong-Mei, O. Yi-Fang, D. Yong, The pressure dependences of elastic and lattice dynamic properties of AlAs from ab initio calculations, Chinese Physics B 22 (2013) 026201.
[6] A. Onton, In Proceedings of the 10th International Conference on the Physics of Semiconductors, Cambridge, Massachusetts, l970, edited by S. P. Keller, J. C. Heusel, F. Stern (U.S. Atomic Energy Commission) New York (1970) 10.
[7] B. Monemar, Fundamental Energy Gaps of AlAs and Alp from Photoluminescence Excitation Spectra Physical Review B8 (1973) 5711.
[8] A. Otero-de-la-Roza, D. Abbasi-Perez, V. Luana, A new version of quasi-harmonic debye model code II models for solid- state thermodynamic, features and implementations, Computer Physics Communication 182 (2011) 2232.
[9] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L.Paulatto, C. Sbraccia, S. Scandolo, G.Sclauzero, A.P.Seitsonen, A. Smogunov, P.Umari, R.M.Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials Journal Physics Condensed Matter 21 (2009) 395502.
[10] M. Flrez, J.M. Recio, E. Francisco, M. A. Blanco, A. M. Penda´s, First-principles study of the rocksalt–cesium chloride relative phase stability in alkali halides, Physical Review B 66 (2002) 4112.
[11] E. Francisco, J.M. Recio, M.A. Blanco, A. Martín Pendás, Quantum-Mechanical Study of thermodynamic and bonding properties of MgF2 Journal of Physics Chemistry A 102 (1998) 1595.
[12] E. Francisco, G. Sanjurjo, M.A. Blanco, Atomistic simulation of SrF2 polymorphs Physical Review B 63 (2001) 094107.
[13] S. Rameshkumar, G. Jaiganesh, V. Jayalakshmi, Refractive index of AlAs and AlSb compounds: An ab-initio study Indian Journal of Science 14 (2015) 29-34.
[14] Y. Mao, X.X. Liang, G.J. Zhao, T.L. Song, Lattice parameters and band structure of ternary mixed crystals AlxGa1−xAs from first-principle calculations Journal of Physics: Conference Series 490(2014) 012172.
[15] W.G. Wyckoff, Crystal Structures 2nd Edition, Krieger, Malabar (1986)
[16] J. Cai, N. Chen, Theoretical study of pressure-induced phase transition in AlAs: from zinc-blende to NiAs structure Physical Review B75 (2007) 174116.
[17] S. Froyen, M.L. Cohen, Structural properties of III-V zinc-blende semiconductors under pressure, Physical Review B28(1983) 3258-3265.
[18] A. Mujica, R.J. Needs, A. Munoz, First-principles pseudo potential study of the phase stability of the III-V semiconductors GaAs and AlAs, Physical Review B52(1995) 8881-8892.
[19] P. Giannozzi, S.D. Gironcoli, P. Pavone, S. Baroni, Ab initio calculation of phonon dispersion semiconuctors, Physical Review B 43(1991) 7231-7242.
[20] H.M. Kagaya, T. Soma, Specific heat and thermal expansion coefficient of Alp Alas and Albs, Solid State Communications62(1987) 707-709.
[21] J.P. Rino, H. Tsuzuki, An interatomic potential for aluminum arsenide: A molecular dynamics study, Computational Materials Science 49 (2010) 270–275.
[22] S. Adachi, GaAs, AlAs and Al xGa1−x As: Material parameters for use in research and device applications Journal of Applied Physics58(1985) 1-26.
[23] S. Adachi, GaAs and Related Materials, Bulk semiconducting and superlattice properties, World Scientific Publishing, Co. Pte. Ltd. (1999).
[24] I. Barin, O. Knacke, O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Springer, Berlin-Heidelberg-New York, (1977).