[1] M. Gratzel, Review dye-sensitized solar cells, Photochemistry and Photobiology C: Photochemistry Reviews 4 (2003) 145–153.
[2] J. Bisquert, Physical electrochemistry of nanostructured devices, Physical Chemistry Chemical Physics 10 (2008) 49–72.
[3] J. Nelson, Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes, Physical Review B 59 23 (1999) 15374-15380.
[4] J.A. Anta, J. Nelson, N. Quirke, Charge transport model for disordered materials: Application to sensitized TiO2, Physical Review B 65 (2002) 125324-125334.
[5] J.A. Anta, I. Mora-Ser, T. Dittrich, J. Bisquert, Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation, Physical Chemistry Chemical Physics 10 (2008) 4478–4485.
[6] J.A. Anta, V. Morales-Florez, Combined effect of energetic and spatial disorder on the trap-limited electron diffusion coefficient of metal-oxide nanostructures, Physical Chemistry C 112 (2008) 10287–10293.
[7] M. Ansari-Rad, Y. Abdi, E. Arzi, Monte carlo random walk simulation of electron transport in dye-sensitized nanocrystalline solar cells: influence of morphology and trap distribution, Physical Chemistry C 116(2012) 3212−3218.
[8] J.P. Gonzalez-Vazquez, J.A. Anta, J. Bisquert, Determination of the electron diffusion length in dye-sensitized solar cells by random walk simulation: compensation effects and voltage dependence, Physical Chemistry C 114 (2010) 8552–8558.
[9] F. Ebrahimi, H. Koochi, A two-scale method for fast estimation of the charge-carrier diffusion coefficient in nano-porous semi-conductors, Physics: Condensed Matter 29(2017) 025901-025906.
[10] H. Koochi, F. Ebrahimi, Geometrical effects on the electron residence time in semiconductor nano-particles, Chemical Physics 141 (2014) 094702-094708.
[11] K.D. Benkstein, N. Kopidakis, J. van de Lagmaat, A.J. Frank, Influence of the percolation network geometry on electron transport in dye- sensitized titanium dioxide solar cells, Physical Chemistry B 107 (2003) 7759-7767.
[12] J.P. Gonzalez-Vazquez, random walk numerical simulation of electron dynamics in solar cells based on disordered materials, Ph.D. Thesis, Sevilla, De Julio Del, (2012).
[13] D. Stauffer, A. Aharony, Introduction to Percolation Theory, Taylor & Francis: London, Washington DC, (1992).
[14] A. Ofir, S. Dor, L. Grinis, A. Zaban, T. Dittrich, J. Bisquert, Porosity dependence of electron percolation in nanoporous TiO2 layers, Chemical Physics 128 (2008) 1-9.
[15] N.W. Ashcroft, N.D. Mermin, Solid state physics, Saunders College, New York, (1976).
[1] M. Gratzel, Review dye-sensitized solar cells, Photochemistry and Photobiology C: Photochemistry Reviews 4 (2003) 145–153.
[2] J. Bisquert, Physical electrochemistry of nanostructured devices, Physical Chemistry Chemical Physics 10 (2008) 49–72.
[3] J. Nelson, Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes, Physical Review B 59 23 (1999) 15374-15380.
[4] J.A. Anta, J. Nelson, N. Quirke, Charge transport model for disordered materials: Application to sensitized TiO2, Physical Review B 65 (2002) 125324-125334.
[5] J.A. Anta, I. Mora-Ser, T. Dittrich, J. Bisquert, Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation, Physical Chemistry Chemical Physics 10 (2008) 4478–4485.
[6] J.A. Anta, V. Morales-Florez, Combined effect of energetic and spatial disorder on the trap-limited electron diffusion coefficient of metal-oxide nanostructures, Physical Chemistry C 112 (2008) 10287–10293.
[7] M. Ansari-Rad, Y. Abdi, E. Arzi, Monte carlo random walk simulation of electron transport in dye-sensitized nanocrystalline solar cells: influence of morphology and trap distribution, Physical Chemistry C 116(2012) 3212−3218.
[8] J.P. Gonzalez-Vazquez, J.A. Anta, J. Bisquert, Determination of the electron diffusion length in dye-sensitized solar cells by random walk simulation: compensation effects and voltage dependence, Physical Chemistry C 114 (2010) 8552–8558.
[9] F. Ebrahimi, H. Koochi, A two-scale method for fast estimation of the charge-carrier diffusion coefficient in nano-porous semi-conductors, Physics: Condensed Matter 29(2017) 025901-025906.
[10] H. Koochi, F. Ebrahimi, Geometrical effects on the electron residence time in semiconductor nano-particles, Chemical Physics 141 (2014) 094702-094708.
[11] K.D. Benkstein, N. Kopidakis, J. van de Lagmaat, A.J. Frank, Influence of the percolation network geometry on electron transport in dye- sensitized titanium dioxide solar cells, Physical Chemistry B 107 (2003) 7759-7767.
[12] J.P. Gonzalez-Vazquez, random walk numerical simulation of electron dynamics in solar cells based on disordered materials, Ph.D. Thesis, Sevilla, De Julio Del, (2012).
[13] D. Stauffer, A. Aharony, Introduction to Percolation Theory, Taylor & Francis: London, Washington DC, (1992).
[14] A. Ofir, S. Dor, L. Grinis, A. Zaban, T. Dittrich, J. Bisquert, Porosity dependence of electron percolation in nanoporous TiO2 layers, Chemical Physics 128 (2008) 1-9.
[15] N.W. Ashcroft, N.D. Mermin, Solid state physics, Saunders College, New York, (1976).