[1] F. Kaempf, Größe und Ursache der Doppelbrechung in Kundtschen Spiegeln und Erzeugung von Doppelbrechung in Metallspiegeln durch Zug, Annalen der Physik 321 (1905) 308-333.
[2] C. Bergholm, Über doppelbrechung in kathoden zerstäubten metallsuchten, Annalen der Physik 348 )1913(1–23.
[3] H. König, G. Helwig, Über die Struktur schräg aufgedampfter Schichten und ihr Einfluß auf die Entwicklung submikroskopischer Oberflächenrauhigkeiten, Optik 6 (1950) 111-124.
[4] O.N. Young, J. Kowal, Optically active fluorite films, Nature 183 (1959) 104-105.
[5] M.T. Taschuk, M.M. Hawkeye, M.J. Brett, Glancing angle deposition. Handbook of Deposition Technologies for Films and Coatings (2010) 621-678.
[6] S. Tawfick, M. Volder, D. Copic, S. J. Park, C.R. Oliver, E.S. Polsen, M.J. Roberts, A.J. Hart, Engineering of micro and nanostructured surfaces with anisotropic geometries and properties, Advanced Materials 24 )2012(1628–74.
[7] Y. He, Y. Zhao, Advanced multi-component nanostructures designed by dynamic shadowing Growth, Nanoscale 3 )2011) 2361–75.
[8] A. Lakhtakia, R. Messier, Sculptured thin films: nanoengineered morphology and optics Bellingham, WA: SPIE press 122 )2005(.
[9] M.M. Hawkeye, M. T.Taschuk, M.J. Brett, Glancing angle deposition of thin films: engineering the nanoscale, John Wiley & Sons, (2014).
[10] J. Musil, P. Baroch, J. Vlček, K.H. Nam, J.G. Han. Reactive magnetron sputtering of thin films: present status and trends, Thin solid films 475.1 (2005) 208-218.
[11] S. Samukawa, M. Hori, SH. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J.C. Whitehead, A.B. Murphy, A.F. Gutsol, S. Starikovskaia, U. Kortshagen, The 2012 plasma roadmap, Applied physics 45) 2012) 253001.
[12] S.Z. Rahchamani, H. Rezagholipour Dizaji, M.H. Ehsani, Study of structural and optical properties of ZnS zigzag nanostructured thin films, Applied Surface Science 356 (2015) 1096-1104.
[13] W. Szmaja, W. Kozłowski, J. Balcerski, PJ. Kowalczyk, J. Grobelny, M. Cichomski. Study of obliquely deposited thin cobalt films. Alloys and compounds 506) 2010( 526–529.
[14] L. Chen, L. Andrea, Y.P. Timalsina, G.C. Wang, T.M. Lu, Engineering epitaxial-nanospiral metal films using dynamic oblique angle deposition. Crystal Growth 13 (2013( 2075–80.
[15] R. Eason, editor. Pulsed laser deposition of thin films. Hoboken, New Jersey, John Wiley & Sons, (2007(.
[16] M.H. Ehsani, H. Rezagholipour Dizaji, S. Azizi, S.F. Ghavami Mirmahalle, F. Hosseini Siyanaki, Optical and structural properties of cadmium telluride films grown by glancing angle deposition, Physica Scripta 88 (2013) 025602-025608.
[17] E.S. Goh, T.P. Chen, S.F. Huang, Y.C. Liu, C.Q. Sun, Bandgap expansion and dielectric suppression of self-assembled Ge nanocrystals. Applied Physics, 109 (2011) 064307.
[18] I. Hodgkinson, Q.h. Wu, J. Hazel, Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Applied optics, 37 (1998) 2653-2659.
[19] T. Hashimoto, K. Okamoto, K. Hara, M. Kamiya, H. Fujiwara. Columnar structure and texture of iron films evaporated at oblique incidence. Thin Solid Films 91 (1982) 145-154.
[20] K. Okamoto, T. Hashimoto, K. Hara, M. Kamiya, H. Fujiwara. Columnar structure and texture of iron films prepared at various evaporation rates. Thin Solid Films 147 (1987) 299-311.
[21] K. Okamoto, K. Itoh. Incidence angle dependences of columnar grain structure and texture in obliquely deposited iron films. Japanese journal of applied physics, 44 (2005) 1382-1388.
[22] X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang , Optical inhomogeneity of ZnS films deposited by thermal evaporation, Applied Surface Science, 254 (2008) 6455–6460.
[23] A.A. Al-Ghamdi, S.A. Khan, A. Nagat, M.A. El-Sadek. Synthesis and optical characterization of nanocrystalline CdTe thin films. Optics & Laser Technology, 42 (2010) 1181-1186.
[24] X. Xiao, G. Dong, J. Shao, H. He and Z. Fan. Optical and electrical properties of SnO 2: Sb thin films deposited by oblique angle deposition. Applied Surface Science, 256 (2010) 1636-1640.
[26] S. Lucas, P. Moskovkin. Simulation at high temperature of atomic deposition, islands coalescence, Ostwald and inverse Ostwald ripening with a general simple kinetic Monte Carlo code. Thin Solid Films, 518 (2010) 5355-5361.