The evolution of entanglement and decoherence of basset-hound states in an asymmetric three-mode open system

Document Type : Full length research Paper

Authors

1 shahid chamran university of Ahvaz

2 Shahid Chamran University of Ahvaz

Abstract

In this study, we examined the entanglement and decoherence properties of an open quantum system consisting of a three-mode asymmetric harmonic oscillator. The basset-hound state was initially chosen and Markovian approximation was assumed. Using PPT criterion and purity, we investigated the effect of the parameters of the system, the initial state and the environment on the evolution of the entanglement and decoherence. It was observed that the latter properties are dependent on the environmental parameters (temperature and dissipation coefficient), the initial state parameter (squeezing parameter) and the system parameter (asymmetric parameter). We observed that entanglement and purity are both decreasing functions of temperature, dissipation coefficient and the asymmetric parameter. On the other hand, purity is a decreasing function of the squeezing parameter, while the entanglement is an increasing function of the latter.

Keywords

Main Subjects


[1] M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, United Kingdom, (2000).
[2] P.J. Dodd, J.J. Halliwell, Disentanglement and decoherence by open system dynamics, Physical Review A 69 (2004) 1–4.
[3] F. Schwabl, Quantum Mechanics, Springer, New York, (2007).
[4] S. Olmschenk, D.N. Matsukevich, P. Maunz, D. Hayes, L.M. Duan, C. Monroe, Quantum teleportation between distant matter qubits, Science 323 (2009) 486-489.
[5] A. Isar, Entanglement generation and evolution in open quantum systems, Open Systems and Information Dynamics 16 (2009) 205-219.
[6] A. Isar, Entanglement in open quantum dynamics, Physica scripta T135 (2009)1–5.
[7] A. Isar, Dynamics of quantum entanglement in Gaussian open systems, Physica Scripta 82 (2010) 1–5.
[8] D. Afshar, S. Mehrabankar, F. Abbasnezhad, Entanglement evolution in the open quantum systems consisting of asymmetric oscillators, The European Physical Journal D 70 (2016) 1–8.
[9] M. Genkin, A. Eisfeld, Robustness of spatial Penning-trapmodes against environment-assisted entanglement, Journal of Physics B: Atomic, Molecular and Optical Physics 44 (2011) 1–6.
[10] G. Adesso, S. Ragy, A.R. Lee, Continuous variable quantum information: Gaussian states and beyond, Open Systems and Information Dynamics 21 (2014) 1–47.
[11] S.L. Braunstein, P. van Loock, Quantum information with continuous variables, Reviews of Modern Physics 77 (2005) 513-577.
[12] G.W. Ford, M. Kac, On the quantum Langevin equation, Journal of Statistical Physics46 (1987) 803–810.
 
[13] S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, C. Fabre, Full multipartite entanglement of frequency-comb Gaussian States, Physical Review Letters 114 (2015) 1–5.
[14] G. Adesso, A. Serafini, F. Illuminati, Multipartite entanglement in three-mode Gaussian states of continuous variable systems: quantification, sharing structure and decoherence, Physical Review A 73 (2006) 1-19.
[15] J. Williamson, On the algebraic   problem concerning the normal forms of linear dynamical systems, American journal of mathematics 58 (1963) 141-163.
[16] P. van Loock, S.L. Braunstein, Telecloning of continuous quantum variables, Physical Review Letters 87 (2001) 1–4.
[17] G. Adesso, A. Serafini, F. Illuminati, Optical state engineering, quantum communication and robustness of entanglement promiscuity in three-mode Gaussian states, New Journal of Physics 9 (2007) 1–36.
[18] G. Lindblad, On the generators of quantum dynamical semigroups, Communications in Mathematical Physics 48 (1976) 119-130.
[19] A.K. Rajagopal, Equations of motion in non-equilibrium statistical mechanics for non-extensive systems, Physica A: Statistical Mechanics and its Applications 253 (1998) 271-289.
[20] Y. Hamdouni, On quantum mechanical transport coefficients in non-equilibrium nuclear processes with application to heavy-ion collisions, Journal of Physics G: Nuclear and Particle Physics 37 (2010(
1–23.
[21] A. Isar, A. Sandulescu, H. Scutaru, E. Stefanescu, W. Scheid, Open quantum systems, International Journal of Modern Physics E 3 (1994) 635-714.
[22] R. Simon, Peres-Horodecki separability criterion for continuous variable systems, Physical Review Letters 84 (2000) 2726-2729.
[24]H.P. Breuer, F. Petruccione, The theory of open quantum systems, Oxford University Press, New York, (2002).
[25] H.D. Zeh, On the interpretation of measurement in quantum theory, Foundations of Physics 1 (1970) 69-76.
[26] W.H. Zurek, Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?, Physical Review D 24 (1981) 1516-1525.
[27] W.H. Zurek, Environment-induced superselection rules, Physical Review D 26 (1982) 1862-1880.
[28] W.H. Zurek, Decoherence, einselection, and the quantum origins of the classical, Reviews of Modern Physics 75 (2003) 715-775.
[29] M. Schlosshauer, Decoherence, the measurement problem, and interpretations of quantum mechanics, Reviews of Modern Physics 76 (2004) 1267-1305.