Effect of La and Ga substitution on the structural and magnetic properties of Pr2-yLayFe17-xGax Intermetallic Compound

Document Type : Full length research Paper



In this study, the crystalline structure and magnetic properties of Pr2-yLayFe17-xGax polycrystalline compound are investigated by means of powder X-ray diffraction, vibrating Sample Magnetometer (VSM) and Superconducting Quantum Interference Device (SQUID) magnetometer. The ternary intermetallic compounds Pr2-yLayFe17-xGax have been synthesized and the results show that the single phase sample with the expected rhombohedral structure is formed. Upon La and Ga substitution, the lattice parameters are increased and due to the change of the anisotropy and exchange effects, the Curie temperature, magnetisation behavior and saturation magnetization is changed. The Curie temperature is decreased due to the increasing of unit cell by La substation whereas; the Ga substation for Fe in the samples causes the increases of Curie temperature. The La and Ga substation leads to the decrease of saturation magnetisation as a result of reduction of the average Fe–Fe hybridization and the increase of the content of the non-magnetic element.


[1] X.P. Zhong, R.J. Radwanski, F.R. De Boer, T.H. Jacobs, K.H.J. Buschow, Magnetic and crystallographic characteristics of rare-earth ternary carbides derived from R2Fe17 compounds, Journal of Magnetism and magnetic materials 86 (1990) 333-340.
[2] L. Bessais, C. Djega-Mariadassou, A. Nandra, M.D. Appay, E. Burzo, Hard magnetic Sm(Fe,Si)9 carbides: Structured and magnetic properties, Physical Review B 69 (2004) 64402-64409.
[3] L. Bessais, E. Dorolti, C. Djega-Mariadassou, High coercivity in nanocrystalline carbides Sm(Fe,Ga)9C, Applied Physics Letter 87 (2005) 192503-192511.
[4] S. Khazzan, N. Mliki, L. Bessais, C. Djega-Mariadassou, Rare-earth iron-based intermetallic compounds and their carbides: Structure and magnetic behaviors, Journal of Magnetism and magnetic materials 322 (2010) 224-229.
[5] J. Pospisil, J.P. Vejpravova, D. Niznansky, V. Sechovsky, Magnetic properties Mössbauer study and MCE in compounds RE2Fe17-xCrx (RE=Pr, Gd), Journal of Magnetism and magnetic materials 310 (2007) e629-e631.
[6] X.C. Kou, F.R. de Boer, R. Grossinger, G. Wiesinger, H. Suzuki, H. Kitazawa, T. Takamasu, G. Kido, Magnetic anisotropy and magnetic phase transitions in R2Fe17 with R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu, Journal of Magnetism and magnetic materials 177–181 (1998) 1002-1007.
[7] K. Takeda, T. Maeda, T. Katayama,Temperature dependence of the magneto-crystalline anisotropy in R2Fe17 (R=Y, Gd, Tb, Dy, Er), Journal of Alloys and Compounds 281 (1998) 50-55.
[8] L. Bessais, K. Younsi, S. Khazzan, N. Mliki, X-ray and intrinsic magnetic properties of nanocrystalline Sm2(Fe,M)17 (M=Si, Ga, Co, Cr, Zr or Mo), Intermetallics 19 (2011) 997-1004.
[9] K. Mandal, A. Yan, P. Kershl, A. Handstein, O. Gutfleisch, K.-H. Muller, The study of magnetocaloric effect in R2Fe17 (R=Y, Pr) alloys, Journal of Physics D: Applied Physics 37 (2004) 2628.
[10] R. Guetari, R. Bez, A. Belhadj, K. Zehani, A. Bezergheanu, N. Mliki, L. Bessais, C.B. Cizmas, Influence of Al substitution on magnetocaloric effect of Pr2Fe17−xAlx, Journal of Alloys and Compounds 588 (2014) 64-69.
[11] J.M.D. Coey, H. Sun, Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia, Journal of Magnetism and magnetic materials 87 (1990) 251-254.
[12] J.M.D. Coey, H. Sun, Y. Otani, D.P.F. Hurley, Gas-phase carbonation of R2Fe17; R = Y, Sm, Journal of Magnetism and magnetic materials 98 (1991) 76-78.
[13] J.L. Wang, F.R. De Boer, X.F. Han, N. Tang, C. Zhang, D. Zhang, E. Bruck, F.M. Yang, Structural and magnetic properties of R2(Fe,Si)17 compounds with R=Tb and Er, Journal of Alloys and Compounds. 284 (1999) 289-294.
[14] E. Girt, Z. Altounian, J. Yang, Structural and magnetic properties of Nd2Fe17−δCrδ (δ=0, 0.5, 1, 1.9), Journal of Applied Physics 81 (1997) 5118-5122.
[15] R. Srilatha, V.S. Muty, G. Markandeyulu,Magnetic properties of YGd2Fe17-x(Ga,Al)x (x=0-8), Journal of Applied Physics 97 (2005) 10M503-10M509.
[16] W.B. Yelon, W.J. James, J.B. Yang, K. Kamaraju, Q. Cai, Z. Chu, S.K. Malik, Observation of novel disordered rhombohedral R2Fe17 (R=rare earth) based compounds, Journal of Applied Physics 91 (2002) 8486-8492.   
[17] F. Pourarian, R. Obermyer, Y. Zheng, S.G. Sankar,W.E.Wallace, Crystal structure and magnetic characteristics of alloys based on R-Fe-Si (R=Y, Nd, Gd, Dy, Ho, Er), Journal of Applied Physics 73 (1993) 6272.
[18] F. Pourarian, R. Obermye, S.G. Sankar, Effect of cobalt substitution on magnetic properties of R2Fe17 silicides (R=Y, Gd, Tb, Er, and Tm), Journal of Applied Physics 75 (1994) 6262.
[19] W.C. Chang, S.H. Tsai, L.J. Chao, Z.B. Hu, H. Luo, W.B. Yelon, Magnetic and neutron diffraction studies of R2Fe17−xAlxC (R=Y, Pr, Tb and Ho) intermetallic compounds with Th2Zn17-type crystal structure, Journal of Magnetism and magnetic materials 172 (1997) 277-284.
[20] M. Venkatesan, K.V.S. Rama Rao, U.V. Varadaraju,Structural, magnetic and exchange interaction studies on R2Fe17−xGax (R=Tm, Er and Sm) compounds, Physica B 291 (2000) 159-172.
[21] J.P. Liu, F.R. de Boer, P.F. de Châtel, R. Coehoorn, K H J Buschow, On the 4f-3d exchange interaction in intermetallic compounds, Journal of Magnetism and magnetic materials 132 (1994) 159-179.
[22] L. Néel, La loi d'approche en a: H et une nouvelle théorie de la dureté magnétique, Journal de Physique et Le Radium 9 (1948) 184-192.
[23] I.A. Al-Omari, Y. Radzyner, Y. Yeshurun, S.S. Jaswal, D.J. Sellmyer, Annealing effects on the magnetic properties of Nd2Fe17-xGax, Journal of Magnetism and magnetic materials 208 (2000) 93-96.