[1] W. Choi, J.-w. Lee, Graphene: synthesis and applications, CRC Press (2011).
[2] W. Du, X. Jiang, L. Zhu, From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene, Journal of Materials Chemistry A 1 (2013) 10592.
[3] G. Liu, W. Jin, N. Xu, Graphene-based membranes, Chemical Society reviews, 44 (2015) 5016-5030.
[4] Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology, Trends in biotechnology, 29 (2011) 205-212.
[5] س.س. توسلمند، م. هاشمی، طراحی فرامواد گرافینی با قابلیت تنظیم خواص اپتیکی، پژوهش سیستمهای بسذرهای، 6 (2016) 127-134.
[6] R. Heyrovska, Atomic structures of graphene, benzene and methane with bond lengths as sums of the single, double and resonance bond radii of carbon, arXiv preprint arXiv 0804.4086 (2008).
]7[ K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.a. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films, science, Science 306 (2004) 666-669.
[8[ C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chemical Society reviews 43 (2014) 291-312.
[9] W. Jie, J. Hao, Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors, Nanoscale 6 (2014) 6346-6362.
[10] K.S. Mali, J. Greenwood, J. Adisoejoso, R. Phillipson, S. De Feyter, Nanostructuring graphene for controlled and reproducible functionalization, Nanoscale 7 (2015) 1566-1585.
[11] J. Wei, T. Vo, F. Inam, Epoxy/graphene nanocomposites – processing and properties: a review, RSC Adv. 5 (2015) 73510-73524.
[12] E.L. Wolf, Applications of Graphene: An Overview, Springer (2014).
]13[ G. Zhao, T. Wen, C. Chen, X. Wang, Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas, RSC Advances 2 (2012) 9286.
]14[V. Skákalová, A.B. Kaiser, Graphene: properties, preparation, characterisation and devices, Elsevier (2014).
[15] X. Zhou, T. Shi, H. Zhou, Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation, Applied Surface Science 258 (2012) 6204-6211.
[16] J. Zhao, L. Liu, F. Li, Graphene oxide: Physics and applications, Springer (2015).
[17] B. Bhushan, D. Luo, S.R. Schricker, W. Sigmund, S. Zauscher, Handbook of nanomaterials properties, Springer Science & Business Media (2014).
[18] R. Sharma, F. Alam, A.K. Sharma, V. Dutta, S.K. Dhawan, ZnO anchored graphene hydrophobic nanocomposite-based bulk heterojunction solar cells showing enhanced short-circuit current, Journal of Materials Chemistry C 2 (2014) 8142-8151.
[19] Z.C. Feng, Handbook of Zinc Oxide and Related Materials: Volume Two, Devices and Nano-Engineering, CRC Press (2012).
[20] M.K. Kavitha, S.C. Pillai, P. Gopinath, H. John, Hydrothermal synthesis of ZnO decorated reduced graphene oxide: Understanding the mechanism of photocatalysis, Journal of Environmental Chemical Engineering 3 (2015) 1194-1199.
[21] J. He, C. Niu, C. Yang, J. Wang, X. Su, Reduced graphene oxide anchored with zinc oxide nanoparticles with enhanced photocatalytic activity and gas sensing properties, RSC Advances 4 (2014) 60253-60259.
[22] Y.W. Wang, A. Cao, Y. Jiang, X. Zhang, J.H. Liu, Y. Liu, H. Wang, Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria, ACS applied materials & interfaces 6 (2014) 2791-2798.
[23] G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide, Advanced materials 22 (2010) 505-509.
[24] S.K. Singh, M.K. Singh, P.P. Kulkarni, V.K. Sonkar, J.J. Gracio, D. Dash, Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications, ACS nano 6 (2012) 2731-2740.
[25] C. Bosch-Navarro, E. Coronado, C. Marti-Gastaldo, J.F. Sanchez-Royo, M.G. Gomez, Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions, Nanoscale 4 (2012) 3977-3982.
[26] C. Gao, X.Y. Yu, R.X. Xu, J.H. Liu, X.J. Huang, AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions, ACS applied materials & interfaces 4 (2012) 4672-4682.
[27] C. Nethravathi, M. Rajamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon 46 (2008) 1994-1988.
[28] Y. Feng, N. Feng, Y. Wei, G. Zhang, An in situ gelatin-assisted hydrothermal synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light, RSC Advances, 4, (2014) 7933-7943.
[29] X. Li, Q. Wang, Y. Zhao, W. Wu, J. Chen, H. Meng, Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites, Journal of colloid and interface science, 411 (2013) 69-75.
[30] M. Nasrollahzadeh, B. Jaleh, A. Jabbari, Synthesis, characterization and catalytic activity of graphene oxide/ZnO nanocomposites, RSC Advance 4 (2014) 36713.
[31] K. Babitha, J.J. Matilda, A.P. Mohamed, S. Ananthakumar, Catalytically engineered reduced graphene oxide/ZnO hybrid nanocomposites for the adsorption, photoactivity and selective oil pick-up from aqueous media, RSC Advances 5 (2015) 50223-50233.
[32] F. Ban, S.R. Majid, N.M. Huang, H.N. Lim, Graphene oxide and its electrochemical performance, International Journal of Electrochemical Science 7 (2012) 4345-4351.
[33] M.K. Kavitha, H. John, P. Gopinath, R. Philip, Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties, Journal of Materials Chemistry C 1 (2013) 3669.
[34] F. Wu, Y. Xia, Y. Wang, M. Wang, Two-step reduction of self-assembed three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO) nanocomposites for electromagnetic absorption, Journal of Materials Chemistry A 2 (2014) 20307-20315.
[35] S. Gayathri, P. Jayabal, M. Kottaisamy, V. Ramakrishnan, Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties, Journal of Applied Physics, 115 (2014) 173504.
[36] Z.-J. Fan, W. Kai, J. Yan, T. Wei, L.-J. Zhi, J. Feng, Y.-m. Ren, L.-P. Song, F. Wei, Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide, ACS nano 5 (2010) 191-198.