[1]. H.A. Weidenmuller, G.E. Mitchell, Random matrices and chaos in nuclear physics: Nuclear structure, Review of Modern Physics 81 (2009) 539-644.
[2]. T.A. Brody et al, Random-matrix physics: spectrum and strength fluctuations, Review of Modern Physics 53 (1981) 385-462.
[3]. A.Y. Abul-Magd, A.A. Sayed, Level statistics of deformed even-even nuclei, Physical Review C 74 (2006.) 37301-37304.
[4]. M. Horoi, V. Zelevinsky, B.A, Brown, Chaos vs Thermalization in the Nuclear Shell Model, Physical Review Letter 74 (1995) 5194-5197.
[5]. J.F. Shriner et al. Fluctuation properties of spacings of low-lying nuclear levels, Zurich of Physics A 338 (1991) 309-318.
[6]. J.M.G. Gomez et al, Recent results in quantum chaos and its applications to atomic nuclei, Journal of Physics: Conference Series 267 (2011) 012061. 012608.
[7]. J.F. Shriner
et al, Fluctuation properties of states in
26Al,
Zurich of Physics A 332 (1990) 393-400.
[10]. Y. Alhassid et al, Parity Dependence of Nuclear Level Densities, Physical Review Letter 84 (2000) 4313- 4316.
[11]. A. Relano et al, Quantum Chaos and 1/f Noise, Physical Review Letter 89 (2002) 244102-244105.
[12]. Y. Alhassid, The statistical theory of quantum dots, Review of Modern Physics 72 (2000) 895-944.
[15].T. von. Egidy et al, Nuclear level densities and level spacing distributions from 20F to 244Am, Nuclear Physics A 454 (1988) 109-127.
[16]. T.A. Brody, A statistical measure for the repulsion of energy levels, Lettere al Nuovo Cimento 7 (1973) 482-484.
[17]. M. Robnik, A note on the level spacings distribution of the Hamiltonians in the transition region between integrability and chaos, Journal of Physics A 20 (1987) L495-L502.
[19]. A.Y. Abul-Magd et al, Statistical analysis of composite spectra, Annals of Physics321 (2006) 560- 580.
[20]. B.R. Maleki, H. Sabri, M.A. Jafarizadeh, Level statistics odf stable and radioactive nuclei by using kernek density estimation method, Journal of Research on Many Body Systems 2 (2013) 47-54.
[21]. H. Sabri et al, Generalization of Brody distribution for statistical investigation, Random Matrices: Theory and Applications 3 (2014) 14500178-14500188.
[22]. M. Rajasekaran et al, Nuclear level density parameter—its dependence on spin and temperature, Physical Review C 37 (1988) 307-315.
[23]. National Nuclear Data Center (Brookhaven National laboratory), Available from: (http://www.nndc.bnl.gov/chart)
[24]. P. Moller et al, Nuclear Ground-State Masses and Deformations, Atomic Data and Nuclear Data Tables 59 (1995) 185.
[25]. H. Sabri et al, Nearest neighbor spacing distribution of U(5) ↔ SO(6) transitional region, European Physical Journal Plus 129 (2014) 52-63.
[26]. H. Sabri, Spectral statistics of rare-earth nuclei: Investigation of shell model configuration effect,
Nuclear Physics A 941 (2015) 364-371.
[28]. A. Bohr, B.R. Mottelson, Nuclear Structure, W. A. Benjamin, Inc. (1971).
[29]. M. Spieker et al, Origin of Low-Lying Enhanced E1 Strength in Rare-Earth Nuclei, Physical Review Letter 114 (2015) 192504 - 192507.
[31]. V.V. Flambaum et al, Statistical theory of finite Fermi systems based on the structure of chaotic eigenstates, Physical Review E 56 (1997) 5144-5150.
[32]. Y. Vretenar et al. Chaos in nuclei with broken pairs, Physical Review C 46 (1992)1334-1339.
[33]. V. Paar et al, Quantum chaos for exact and broken K quantum number in the interacting-boson model, Physical Review C 41 (1990) 2397-2401.
[34]. J.M. G Gómez et al, Localization in 2p1f nuclear shell-model wavefunctions, Physics Letter B 567 (2003) 251.