Investigating the effect of shell model configuration on statistical properties of even-even nuclei

Document Type : Full length research Paper

Authors

Tabriz

Abstract

In this paper, we have studied the spectral statistics of 101 even-even nuclei in the nearest neighbor spacing distribution framework. Sequences are prepared by using all the latest experimental data for 2+ levels of considered nuclei in the 40 ≥ A≥198 mass region. The maximum likelihood estimation technique has been used to extract the Berry-Robnik distribution’s parameter which explores the regular or chaotic behavior of considered sequences. Sequences are classified as their mass, quadrupole deformation parameter, the energy ratio and the shell model configuration for the last protons and neutrons of all nuclei. Our results suggest a regular dynamics for these even mass nuclei. Also, the regularity is increased for light nuclei vis-a-vis heavier ones and also the deformed nuclei vis-a-vis spherical ones. Our results show a deviation of chaotic dynamics when the spins of proton levels are decreased or the spins of neutron levels are increased.

Keywords


[1]. H.A. Weidenmuller, G.E. Mitchell, Random matrices and chaos in nuclear physics: Nuclear structure, Review of Modern Physics 81 (2009) 539-644.

[2]. T.A. Brody et al, Random-matrix physics: spectrum and strength fluctuations, Review of Modern Physics 53 (1981) 385-462.

[3].          A.Y. Abul-Magd, A.A. Sayed, Level statistics of deformed even-even nuclei, Physical Review C 74 (2006.) 37301-37304.

[4]. M. Horoi, V. Zelevinsky, B.A, Brown, Chaos vs Thermalization in the Nuclear Shell Model, Physical Review Letter 74 (1995) 5194-5197.

[5]. J.F. Shriner et al. Fluctuation properties of spacings of low-lying nuclear levels, Zurich of Physics A 338 (1991) 309-318.

[6]. J.M.G. Gomez et al, Recent results in quantum chaos and its applications to atomic nuclei, Journal of Physics: Conference Series 267 (2011) 012061. 012608.

[7].          J.F. Shriner et al, Fluctuation properties of states in26Al,  Zurich of Physics A 332 (1990) 393-400.
[8]. A. Hamoudi et al, Statistical fluctuations of electromagnetic transition intensities and electromagnetic moments in pf-shell nuclei, Physical Review C 65 (2002) 064311-064317.

[9]. T. von Egidy et al, Nuclear level densities and level spacing distributions: Part II, Nuclear Physics A 481 (1988) 189-206.

[10]. Y. Alhassid et al, Parity Dependence of Nuclear Level Densities, Physical Review Letter 84 (2000) 4313- 4316.

[11]. A. Relano et al, Quantum Chaos and 1/f Noise, Physical Review Letter 89 (2002) 244102-244105.

[12]. Y. Alhassid, The statistical theory of quantum dots, Review of Modern Physics 72 (2000) 895-944.

[13]. M.A. Jafarizadeh et al, Investigation of spectral statistics of nuclear systems by maximum likelihood estimation method, Nuclear Physics A 890-891 (2012) 29-49.

[14].D. Mulhall, Maximum likelihood method to correct for missed levels based on the Δ3(L) statistic, Physical Review C 83 (2011) 54321- 54328.

[15].T. von. Egidy et al, Nuclear level densities and level spacing distributions from 20F to 244Am, Nuclear Physics A 454 (1988) 109-127.

[16]. T.A. Brody, A statistical measure for the repulsion of energy levels, Lettere al Nuovo Cimento 7 (1973) 482-484.

[17]. M. Robnik, A note on the level spacings distribution of the Hamiltonians in the transition region between integrability and chaos, Journal of Physics A 20 (1987) L495-L502.

[18]. R.A. Molina, Pairing and spectral statistics of low energy levels, European Physical Journal A 28 (2006) 125-128.

[19]. A.Y. Abul-Magd et al, Statistical analysis of composite spectra, Annals of Physics321 (2006) 560- 580.

[20]. B.R. Maleki, H. Sabri, M.A. Jafarizadeh, Level statistics odf stable and radioactive nuclei by using kernek density estimation method,  Journal of Research on Many Body Systems 2 (2013) 47-54.
[21]. H. Sabri et al, Generalization of Brody distribution for statistical investigation, Random Matrices: Theory and Applications 3 (2014) 14500178-14500188.
[22]. M. Rajasekaran et al, Nuclear level density parameterits dependence on spin and temperature, Physical Review C 37 (1988) 307-315.
[23]. National Nuclear Data Center (Brookhaven National laboratory), Available from: (http://www.nndc.bnl.gov/chart)
[24]. P. Moller et al, Nuclear Ground-State Masses and Deformations, Atomic Data and Nuclear Data Tables 59 (1995) 185.
[25]. H. Sabri et al, Nearest neighbor spacing distribution of U(5) ↔ SO(6) transitional region, European Physical Journal Plus 129 (2014) 52-63.
[26]. H. Sabri, Spectral statistics of rare-earth nuclei: Investigation of shell model configuration effect, Nuclear Physics A 941 (2015) 364-371.

[27]. J.M.G. Gomez et al, Many-body quantum chaos: Recent developments and applications to nuclei, Physics Reports 499 (2011) 103 -226.

[28]. A. Bohr, B.R. Mottelson, Nuclear Structure, W. A. Benjamin, Inc. (1971).

[29]. M. Spieker et al, Origin of Low-Lying Enhanced E1 Strength in Rare-Earth Nuclei, Physical Review Letter 114 (2015) 192504 - 192507.

[30]. S.K. Kataria, V.S. Ramamurthy, Macroscopic level density parameters of nuclei, Physical Review C 22 (1988) 2263-2266.

[31]. V.V. Flambaum et al, Statistical theory of finite Fermi systems based on the structure of chaotic eigenstates, Physical Review E 56 (1997) 5144-5150.

[32]. Y. Vretenar et al. Chaos in nuclei with broken pairs, Physical Review C 46 (1992)1334-1339.

[33]. V. Paar et al, Quantum chaos for exact and broken K quantum number in the interacting-boson model, Physical Review C 41 (1990) 2397-2401.

[34]. J.M. G Gómez et al, Localization in 2p1f nuclear shell-model wavefunctions, Physics Letter B 567 (2003) 251.