Investigation on electromagnetic wave absorption behavior of Hard-Soft ferrite nanocomposite in the frequency range of 1-18 GHz

Document Type : Full length research Paper


Electroceram Research Center, Malek Ashtar University of Technology, Shahin Shahr, Iran


In this study, we investigate the electromagnetic wave absorption of Hard-Soft ferrite nanocomposites in the frequency range of 1-18 GHz. These composites consist of two different magnetic phases with different weight ratios. The hard magnetic phase consists of Strontium Hexaferrite (SF) and the soft magnetic phase consists of Cobalt Zinc Ferrite (CZF). XRD analysis of the samples indicate formation of pure phase for each magnetic phases. Investigation of the real and imaginary parts of complex permittivity and permeability of samples indicate the response of electromagnetic waves to these samples in the frequency range of 1-18 GHz. The reflection loss versus frequency shows this absorbing behavior in the samples.


[1]    J. Jiang, L.H. Ai, SrFe12O19/ZnO hybrid structures: synthesis, characterization and properties, Journal of Alloys and Compounds 502 (2010) 488–490.
[2]    M.R. Meshram, N.K. Agrawal, B. Sinha, P.S. Misra, Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber, Journal of Magnetism and Magnetic Materials 271.2 (2004) 207-214.
[3]    S.M. Abbas, A.K. Dixit, R. Chatterjee, T.C. Goel, Complex permittivity, complex permeability and microwave absorption properties of ferrite–polymer composites, Journal of Magnetism and Magnetic Materials 309.1 (2007) 20-24.
[4]    A. Ohlan, K. Singh, A. Chandra, Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4-18 GHz, Applied physics letters 93.5 (2008) 053114-1.
[5]    Z. Zhang, X. Liu, X. Wang, Y. Wu, R. Li, Effect of Nd–Co substitution on magnetic and microwave absorption properties of SrFe12O19 hexaferrites, Journal of Alloys and Compounds 525 (2012) 114-119.
[6]    H. Bayrakdar, Complex permittivity, complex permeability and microwave absorption properties of ferrite–paraffin polymer composites, Journal of Magnetism and Magnetic Materials 323.14 (2011) 1882-1885.
[7]    C. Dong, X. Wang, P. Zhou, T. Liu, J. Xie, Microwave magnetic and absorption properties of M-type ferrite BaCoxTixFe12−2xO19 in the Ka band, Journal of Magnetism and Magnetic Materials 354 (2014) 340-344.
[8]    L. Li, K. Chen, H. Liu, G. Tong, H. Qian, B. Hao, Attractive microwave-absorbing properties of M-BaFe12O19 ferrite, Journal of Alloys and Compounds 557 (2013) 11-17.
[9]    O. Masala, D. Hoffman, N. Sundaram, K. Page, Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa, Solid State Sciences 8 (2006) 1015-1022.
[10] J.R. Liu, M. Ttoh, K. Machida, Magnetic and electromagnetic wave absorption properties of α-Fe/Z-type Ba-ferrite nanocomposites, Journal of Applied Physics Letters 88 (2006) 062503(1–3).
[11]H. Yang, T. Ye, Y. Lin, M. Liu, Preparation and microwave absorption property of graphene/BaFe12O19/CoFe2O4 nanocomposite, Applied Surface Science 357 (2015) 1289-1293.
[12]S. Tyagi, P. Verma, H.B. Baskey, R.C. Agarwala, Microwave absorption study of carbon nano tubes dispersed hard/soft ferrite nanocomposite, Ceramics International 38.6 (2012) 4561-4571.
[13] N. Chen, G. Mu, X. Pan, K. Gan, M. Gu, Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders, Materials Science and Engineering: B 139.2 (2007) 256-260.
[14] S. Tyagi, H.B. Baskey, R.C. Agarwala, V. Agarwala, Development of hard/soft ferrite nanocomposite for enhanced microwave absorption, Ceramics International 37.7 (2011) 2631-2641.
[15] X. Shen, F. Song, J. Xiang, M. Liu, Y. Zhu, Shape Anisotropy, Exchange‐Coupling Interaction and Microwave Absorption of Hard/Soft Nanocomposite Ferrite Microfibers, Journal of the American Ceramic Society 95.12 (2012) 3863-3870.
[16] T. Maeda, S. Sugimoto, T. Kagotani, N. Tezukaand, Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth–iron–boron compounds, Journal of Magnetism and Magnetic Materials 281.2 (2004) 195-205.
[17] X. Shen, F. Song, X. Yang, Z. Wang, M. Jing, Hexaferrite/α-iron composite nanowires: Microstructure, exchange-coupling interaction and microwave absorption, Journal of Alloys and Compounds 621 (2015) 146-153.
[18] S. Hazra, B.K. Ghosh, H.R. Joshi, M.K. Patra, R.K. Jani, Development of a novel one-pot synthetic method for the preparation of (Mn0.2Ni0.4Zn0.4Fe2O4)x–(BaFe12O19)1−x nanocomposites and the study of their microwave absorption and magnetic properties, Rsc Advances 4.86 (2014) 45715-45725.
[19] M. Mehdipour, H. Shokrollahi, Comparison of microwave absorption properties of SrFe12O19, SrFe12O19/NiFe2O4, and NiFe2O4 particles, Journal of Applied Physics 114.4 (2013) 043906.
[20] S.E. Jacobo, P.G. Bercoff, C.A. Herme, L.A. Vives, Sr hexaferrite/Ni ferrite nanocomposites: magnetic behavior and microwave absorbing properties in the X-band, Materials Chemistry and Physics 157 (2015) 124-129.
[21] J.G. Wan, X.W. Wang, Y.J. Wu, M. Zeng, Y. Wang, Magnetoelectric CoFe2O4-Pb(Zr, Ti)O3 composite thin films derived by a sol-gel process, Applied Physics Letters 86.12 (2005) 122501-122503.
[22] X. Huang, J. Zhang, S. Xiao, The cobalt zinc spinel ferrite nanofiber: lightweight and efficient microwave absorber, Journal of the American Ceramic Society 97.5 (2014) 1363-1366.
[23] X. Huang, J. Zhang, W. Rao, T. Sang, B. Song, Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites, Journal of Alloys and Compounds 662 (2016) 409-414.
[24] P.C. Fannin, C.N. Marin, I. Malaescu, N. Stefu, P. Vlazan, Microwave absorbent properties of nanosized cobalt ferrite powders prepared by coprecipitation and subjected to different thermal treatments, Materials & Design 32.3 (2011) 1600-1604.
[25] M. Sivakumar, S. Kanagesan and et al., Synthesis of CoFe2O4 powder via PVA assisted sol–gel process, Journal of Materials Science: Materials in Electronics 23 (2012) 1045-1049.
[26] W. Li, and L. Fa-Shen, Structural and magnetic properties of Co1-xZnxFe2O4 nanoparticles, Chines Physics B 17 (2008) 1858-1862.
[27] A. Hunyek, C. Sirisathitkul, P. Harding, Synthesis and Characterization of CoFe2O4 particle by PVA sol-gel method, Advanced Materials Research 93-94 (2010) 659-663.
[28] Y. Waseda, E. Matsubara, and K. Shinoda, X-ray diffraction crystallography: introduction, examples and solved problems, Springer Science & Business Media, (2011).
[29]S. Singhal, T. Namgyal, S. Bansal, Effect of Zn substitution on the magnetic properties of cobalt ferrite nano particles prepared via sol-gel route, Journal of Electromagnetic Analysis and Applications 2.6 (2010) 376-381.
[30] R.K. Sahu, O. Mohanta, A.K. Pramanik, XPS study on the correlation of magnetic properties and site occupancy of Al doped SrFe12O19Journal of Alloys and Compounds 532 (2012) 114–120.
[31]W.Y. Zhao, P. Wei, H.B. Cheng, X.F. Tang, Q.J. Zhang, FTIR Spectra, Lattice Shrinkage, and Magnetic Properties of CoTi‐Substituted M‐Type Barium Hexaferrite Nanoparticles, Journal of the American Ceramic Society 90 (2007) 2095-2103.
[32]S. Rana, J. Philip, B. Raj, Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier transform infrared transmission spectrometry and thermogravimetry, Materials Chemistry and Physics 124.1 (2010) 264-269.