Photo-fission Cross Section of Uranium Isotopes using three humps barrier

Document Type : Full length research Paper

Authors

1 Faculty member, Department of Nuclear Physics, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran

2 Department of Nuclear Physics, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran

Abstract

In this investigation calculated cross section of induced photo-fission of uranium Isotopes, 230-239U using simulation through optical model are compared with experimental data. To obtain photo-fission cross section transition probability through three humps fission barrier is used. Also, to calculate level density of compound nucleus, improved version of Enhanced Generalized Super-fluid Model (EGSM) is employed. Simulated cross sections using Empire code for these Isotopes in a wide range of energy are compared with available experimental data. Cross sections for different isotopes of uranium as a function of energy in the range 5 to 20 MeV are plotted. Good agreement achieved when the results of Empire code are compared with available experimental data.

Keywords


[1] M.R. Pahlavani, D. Naderi, Study of fusion cross-section in heavy-ion fusion-fission reactions at around fusion barrier energies using the Langevin dynamical approach, The European Physical Journal A 48 (2012) 9.
[2] M.R. Pahlavani, S. Mirfathi, Dynamical simulation of neutron-induced fission of uranium isotopes using four-dimensional Langevin equations, Physical Review C 93 (2016) 4.
[3] R. Haxby, W. Shoupp, W. Stephens, W. Wells, Photo-Fission of Uranium and Thorium, Physical Review 59 (1941) 57.
[4] R. Vandenbosch, J.R. Huizenga, nuclear Fission, Academic, New York, (1973).
[5] J.R. Huizenga, H.C. Britt, Theoretical photofusion-theory and experiment. In Proceedings of the International Conference on Photonuclear Reactions and Applications,2 (1973) 833-4,edited by B. L. Berrnan. 
[6] B.S. Bhandari, I.C. Nascimento, Electrofission and photofission of 238U in the energy range 6-60 MeV, Nuclear Science. Engineer 60 (1976) 19.
[7] Empire II: M. Herman, “EMPIRE-II statistical model code for nuclear reaction calculations,” in Nuclear Reaction Data and Nuclear Reactors (N. Paver, M. Herman, A. Gandini, eds.), vol. 5 of ICTP Lecture Notes, pp. 137–230, ICTP, Trieste, 2001.
[8] W. Nazarewicz, Variety of shapes in the mercury and lead isotopes, Physics Letter B 305 (1993) 195.
[9] R.R. Chasman, Very extended minima in the A=180 mass region, Physical Letter B 302 (1993) 134.
[10] T.R. Werner, J. Dudek, Shape coexistence effects of super- and hyperdeformed configurations in rotating nuclei with 58≤Z≤74, Atomic Data Nuclear Data Tables 50 (1992) 179.
[11] L. Csige, D.M. Filipescu, T. Glodariu, J. Gulyás, M.M. Günther, D. Habs, H.J. Karwowski, A. Krasznahorkay, G.C. Rich, M. Sin, L. Stroe, O. Tesileanu, P.G. Thirolf,  Exploring the multihumped fission barrier of 238U via sub-barrier photofission. Physical Review C 87 (2013) 4.
[12] M.J. Lopez Jiménez, B. Morillon, P. Romain, Triple-humped fission barrier model for a new 238U neutron cross-section evaluation and first validations. Annals of Nuclear Energy 32 2 (2005) 195-213.
[13] U. Brosa, S. Grossmann, A. Müller, 1990. Nuclear scission. Physics Reports 197 4 (1990) 167-262.
[14] M. Sin. R. Capote, S. Goriely, S. Hilaire, A.J. Koning, Neutron-induced fission cross section on actinides using microscopic fission energy surfaces, Internatinal Conferance on Nuclear Data for Science and Technology 22-27 April Nice France (2007).
[15] S.G. Nilsson, J.R. Nix, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustafson, P. Moller, On the spontaneous fission of nuclei with Z near 114 and N near 184, Nuclear Physics A 115 (1968) 545.
[16] B.S. Bhandari, Three-hump fission barrier in Th, Physical Review C 19 (1979) 1820.
[17] N. Froman, P.O. Froman, JWKB Approximation Contributions to the Theory, North-Holland Publishing Company, Amsterdam, (1965).
[18] P.G. Thirolf, D. Habs, Spectroscopy in the Second and Third Minimum of Actinide Nuclei, Progress in Particle and Nuclear Physics 49 (2002) 325-402
[19] D.L. Hill, J.A. Wheeler, Nuclear Constitution and the Interpretation of Fission Phenomena, Physical Review 89 (1953) 1102.
[20] M. Sin, R. Capote, Transmission through multi-humped fission barriers with absorption: A recursive approach, Physical Review C 77 (2008) 054601.
[21] A.V. Ignatyuk, Technical Report INDC (CCP)-233, IAEA, Vienna, Austria
[22] A. Junghans , M. de Jong, , H. Clerc, A. Ignatyuk, G. Kudyaev, K. Schmidt, Projectile-fragment yields as a probe for the collective enhancement in the nuclear level density, Nuclear Physics A 629 3-4 (1998) 635-655.
[23] B.L. Berman, J.T. Caldwell, E.J. Dowdy, S. S. Dietrich, P. Meyer, R.A. Alvarez, Photofission and photoneutron cross sections and photofission neutron multiplicities for 233U, 234U, 237Np, and 239Pu, Physical Review C 34 (1986) 2201
[24] B.L. Berman, J.T. Caldwell, E.J. Dowdy, S.S. Dietrich, P. Meyer, R.A. Alvarez, Photofission and photoneutron cross sections and photofission neutron multiplicities for 233U, 234U, 237Np, and 239Pu, Physical Review C 34(1986) 2201
[25] C.D. Bowman, G.F. Auchampaugh, S.C. Fultz, Photodisintegration of 235U, Physical Review 133 (1964) B 676
[26] J.T. Caldwell, E.J. Dowdy, B.L. Berman, R.A. Alvarez, P. Meyer, Giant resonance for the actinide nuclei: Photoneutron and photofission cross sections for 235U, 236U, 238U, and 232Th, Physical Review C 21(1980) 1215
[27] R.A. Anderl, M.V. Yester, R.C. Morrison,  Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV, Nuclear Physics A 212  Issue 2 (1973) 221-240
[28] J.T. Caldwell, E.J. Dowdy, B.L. Berman, R.A. Alvarez, P. Meyer, Giant resonance for the actinide nuclei: Photoneutron and photofission cross sections for 233U, 236U, 238U and 232Th, Physical Review C 21 (1980) 1215.
[29] B.L. Berman, J.T. Caldwell, E.J. Dowdy, S.S. Dietrich, P. Meyer, R.A. Alvarez Photo fission and photo neutron cross sections and photo fission neutron multiplicities for 233U 234U 237Np and 239pu, Physical Review C 34, (1986) 2201.
[30] M. Sin, R. Capote, A. Ventura, M. Herman, P. Oblozinsk´y, Fission of light actinides: 232Th (n,f) and 231Pa(n,f ) reactions, Physical Review C 74 (2006). 014608
[31] M. Sin, R. Capote, M.W. Herman, A. Trkov, Extended optical model for fission, Physical Review C 93 (2016) 034605
 [32] T. Frommhold, F. Streiper, W. Henkel, U. neissl, J. Ahrens, R. Beck, J. Peise, and M. Schmitz, Physical Letters B 295 (1992) 28.
 [33] C. Cetina, P. Heimberg, B. Berman, W. Briscoe, G. Feldman, L. Murphy, H. Crannell, A. Longhi, D. Sober, J. Sanabria, G. Kezerashvili, Photofission of heavy nuclei from 0.2 to 3.8 GeV, Physical Review C 65 (2002) 4.
[34] S.E. Vigdor, H.J. Karwowski, Influence of Deformed-Nucleus Level Densities on Statistical Model Calculations for High-Spin Fission, Physical Review C 26 (1982) 1068.
[35] A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Soviet Journal Nuclear Physics 21 (1975) 255.
[36] J. Ahrens, J. Arends, P. Bourgeois, P. Carlos, J. Fallou, N. Floss, P. Garganne, S. Huthmacher, U. Kneissl, G. Mank, , B. Mecking, H. Ries, R. Stenz, A. Veyssière, Measurement of the total cross section for 235U and 238U photofission in the δ-resonance region, Physics Letters B 146 (1984) 5 303-306.
[37] T. Frommhold, F. Streiper, W. Henkel, U. neissl, J. Ahrens, R. Beck, J. Peise, M. Schmitz, Total photofission cross section for 238U as a substitute for the photon absorption cross section in the energy range of the first baryon resonances, Physical Letters B 295(1992)28.