ترابرد اسپینی در یک نانونوار سیلیسینی ابرشبکه

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 عضو هیئت علمی گروه فیزیک، دانشگاه زنجان، زنجان، ایران

2 دانشجو

3 دانشجوی دکتری

چکیده

در این مقاله در رهیافت تنگابست و به روش تابع گرین، ویژگی های ترابرد اسپینی در یک نانونوار سیلیسینی زیگزاگ که به دو الکترود نیم نامتناهی فلزی متصل شده است را در حضور میدان های الکتریکی، تبادلی و بی نظمی بررسی می نماییم. محاسبات ما نشان می دهد که در حضور میدان الکتریکی عمود بر ورقه سیلیسین و بی نظمی، گذار فاز فلز- نیم‌رسانا در سامانه رخ می دهد. همچنین با تغییر پهنایی از نوار که میدان الکتریکی به آن اعمال می شود، پهنای گاف انرژی قابل کنترل خواهد بود به طوری که با افزایش پهنا، گاف نواری افزایش می یابد. افزون بر این، با اعمال بی نظمی، شاهد کاهش رسانش و افزایش پهنای گاف نواری خواهیم بود. می توان با کنترل پارامترهایی مانند پهنای موثر، غلظت بی نظمی، بزرگی میدان الکتریکی و تبادلی گاف اسپینی سامانه را کنترل نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Spin transport in a superlattice silicene nanoribbon

نویسنده [English]

  • Farhad Khoeini 1
1 Department of Physics, University of Zanjan, PO Box 45195–313, Zanjan, Iran
2
3
چکیده [English]

In this article, we investigate the spin transport properties of a superlattice silicene nanoribbon connected to two semi-infinite metallic leads, in the tight-binding model and Green's function approach, and in the presence of disorder and electric and exchange fields. Our calculations show that the metal-semiconductor phase transition occurs, when a perpendicular electric field and/or disorder is applied to the system. Also by changing the steplike electric field, the width of the energy gap will be controlled. In addition, by applying the disorder such as vacancy and impurity, the conductance of the system decreases and its band gap increases. Namely, the band gap of the system can be tuned by varying the relevant parameters, such as disorder concentration, steplike electric field and exchange field strength.

کلیدواژه‌ها [English]

  • silicene nanoribbon
  • superlattice
  • spin transport
  • tight-binding
  • Green's function
 [1] B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial growth of a silicene sheet, Applied Physics Letters 97 (2010) 223109.
[2] P. Vogt, P.D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. Asensio, A. Resta, B. Ealet, G.L. Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Physical review letters 108 (2012) 155501.
[3] J.Y. Wu, S.C. Chen, M.F. Lin, Temperature-dependent Coulomb excitations in
silicene, New Journal of Physics 16 (2014) 125002.
[4] N.D. Drummond, V. Zolyomi, V.I. Fal'Ko, Electrically tunable band gap in silicene, Physical Review B 85 (2012) 075423.
[5] M. Ezawa, Monolayer Topological Insulators: Silicene, Germanene, and Stanene, Journal of the Physical Society of Japan 84 (2015) 121003.
[6] Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu, Tunable bandgap in silicene and germanene, Nano letters 12 (2012) 113.
[7] M. Ezawa, Valley-Polarized Metals and Quantum Anomalous Hall Effect in Silicene Physical Review Letters 109 (2012) 055502.
[8] M. Farokhnezhad, M. Esmaeilzadeh, S. Ahmadi, N. Pournaghavi. Controllable spin polarization and spin filtering in a zigzag silicene nanoribbone, Journal of Applied Physics 117 (2015) 173913.
 [9] C.-C. Liu, W. Feng, Y. Yao, Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium Physical Review Letters 107 (2011) 076802.
[10] C.L. Kane, E.J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect, Physical Review Letters 95 (2005) 146802.
 [11] C.C, Liu, H. Jiang, Y. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin, Physical Review B 84 (2011) 195430.
[12] A. Dimoulas, Silicene, germanene: Silicon and germanium in the “flatland”, Microelectronic Engineering131 (2015) 68.
[13] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature, Nature nanotechnology 10 (2015) 227.
[14] K. Shakouri, H. Simchi, M. Esmaeilzadeh, H .Mazidabadi, F.M. Peeters, Tunable spin and charge transport in silicene nanoribbons, Physical Review B 92 (2015) 035413.
[15] M.L. Sancho, J.L. Sancho, J. Rubio, Quick iterative scheme for the calculation of transfer matrices: application to Mo (100), Journal of Physics F: Metal Physics 14 (1984) 1205.
[16] M.L. Sancho, J.L. Sancho, J.L. Sancho, J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, Journal of Physics F: Metal Physics 15 (1985) 851.
[17] T.C. Li, S.P. Lu, Quantum conductance of graphene nanoribbons with edge defects, Physical Review B 77 (2008) 085408.
[18] F. Khoeini, Kh. Shakouri, F.M. Peeters, Peculiar half-metallic state in zigzag nanoribbons of MoS2: Spin filtering, Physical Review B 94 (2016) 125412.
[19] ک. قادری، ف. خوئینی، مطالعه نظری رسانش الکترونی در یک سامانه کوانتومی با الکترودهای دو زنجیری، پژوهش سیستم‌های بس‌ذره‌ای3 (1392)، 39-29.
 [20] J. Sivek, H. Sahin, B. Partoens, F.M. Peeters, Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties, Physical Review B 87 (2013) 085444.