[1] D. Bimberg, M. Grudmann, N.N. Ledentsov, Quantum Dot Heterostructures, John Wiley, New York, (1999).
[2] S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattices Properties, World Scientific, Singapore, (1994).
[3] D. Ferry, S. Goodnick, Transport in Nanostructures, Cambridge University press Cambridge, (1997).
[4] L. Guo, Structural, energetic, and electronic properties of hydrogenated aluminum arsenide clusters, Journal of Nanoparticle Research 13 (2011) 2029-2039.
[5] J. Weiner, D. Chemla, D. Miller, H. Haus, A. Gossard, W. Wiegmann, C. Burrus, Highly anisotropic optical properties of single quantum well waveguides, Applied Physics Letters 47 (1985) 664-669.
[6] L. Pfeiffer, K. West, H. Stormer, J. Eisenstein, K. Baldwin, D. Gershoni, J. Spector, Formation of high quality two-dimensional electron gas on cleaved GaAs, Applied Physics Letters 56 (1990) 1697-1701.
[7] M. Yoshita, H. Akiyama, L. Pfeiffer, K. West, Quantum wells with atomically smooth interfaces, Applied Physics Letters 81 (2002) 49-56.
[8] R. Khordad, Quantum wire with parallelogram cross section: optical properties, Journal of Theoretical and Applied Physics 6 (2012) 19-25.
[9] R. Khordad, Second and third-harmonic generation of parallelogram quantum wires: electric field, Indian Journal of Physics 88 (2014) 275-281.
[10] W. Xie, S. Liang, Optical properties of a donor impurity in a two-dimensional quantum pseudodot, Physica B 406 (2011) 4657-4660.
[11] Y. Hayamizu, M. Yoshita, S. Watanabe, H. Akiyama, L. Pfeiffer, K. West, Lasing from a single-quantum wire, Applied Physics Letters 81 (2002) 4937-4941.
[12] L. Mayants, The Enigma of Probability and Physics, Springer, (1984).
[13] Y. Okamoto, Nonextensive Statistical Mechanics, Application, Springer, (2001).
[14] A.H. Darooneh, Insurance pricing in small size markets, Physica A 380 (2007) 411-417.
[15] A.H. Darooneh, C. Dadashinia, Analysis of the spatial and temporal distributions between successive earthquakes: Nanextensive statistical mechanics viewpoint, Physica A 387 (2008) 3647-3654.
[16] C. Tsallis, Possible generalization of Boltzmann-Gibbs Statistics, Journal of Statistical Physics 52 (1988) 479-487.
[17] B.H. Lavenda, J.D. Davies, Additive Entropies of degree-q and the Tsallis Entropy, Journal of Applied Sciences 5 (2005) 315-322.
[18] C. Beck, Generalised information and entropy measures in physics, Contemporary Physics 50 (2009) 495-510.
[19] T.S. Biro, G.G. Barnafoldi, P. V n, Quark-gluon plasma connected to finite heat bath, The European Physical Journal A 49 (2013) 110-116.
[20] N. Ito, C. Tsallis, Specific heat of the harmonic oscillator within generalized equilibrium statistics, Il Nuovo Cimento D 11 (1989) 907-911.
[21] L.S. Lucena, L.R. da Silva, C. Tsallis, Departure from Boltzmann-Gibbs statistics makes the hydrogen-atom specific heat a computable quantity, Physical Review E 51 (1995) 6247-6251.
[22] R. Khordad, Study of specific heat of quantum pseudodot under magnetic field, International Journal of Thermophysics 34 (2013) 1148-1157.
[23] R. Khordad, B. Mirhosseini, Internal energy and entropy of a quantum pseudodot, Physica B 420 (2013) 10-14.
[24] M. Barati, N. Moradi, Study of the specific heat of a hydrogenic donor impurity at the center of a spherical quantum dot in
contact with a heat reservoir, Journal of Computational and Theoretical Nanoscience 6 (2009) 1709-1713.
[25] R. Khordad, M.A. Sadeghzadeh, A. Mohamadian Jahan-Abad, Effect of magnetic field on internal energy and entropy of a parabolic cylindrical quantum dot, Communications in Theoretical Physics 59 (2013) 655-660.
[26] R. Khordad, M.A. Sadeghzadeh, A. Mohamadian Jahan-Abad, Specific heat of a parabolic cylindrical quantum dot in the presence of magnetic field, Superlattices and Microstructures 58 (2013) 11–19.
[27] V. Amar, M. Pauri, A. Scotti, Schrodinger equation for convex plane polygons: A tiling method for the derivation of eigenvalues and eigenfunctions, Journal of Mathematical Physics 32 (1991) 2442-2432.
[28] W.K. Li, S.M. Blinder, Solution of Schrodinger equation for a particle in an equilateral triangle, Journal of Mathematical Physics 26 (1985) 2784-2792.
[29] P.N. Gorley, Y.V. Vorobiev, J.G. Hern ndez, P.P. Horley, Analytical solution of the Schrodinger equation for an electron confined in a triangle-shaped quantum well, Microelectronic Engineering 66 (2003) 39-45.
[30] P.J. Richens, M.V. Berry, Pseudointegrable systems in classical and quantum mechanics, Physica D 2 (1981) 495-512.
[31] V.I. Arnold, A. Avez, Ergodic Problems of Classical Mechanics, Benjamin, New York, (1968).
[32] R. Khordad, Continuum Mechanics and Thermodynamics 28 (2016) 947-956.
[33] M. Gell-Mann, C. Tsallis, Nonextensive Entropy Interdisciplinary Application, Oxford University Press, New York, (2004).
[34] S. Abe, Y. Okamoto, Nonextensive Statistical Mechanics and its Application, Springer-Verlag, Berlin, Heidelberg, (2001).