[1] P.Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Springer, (2005).
[2] C. Pickering, M.I.J. Beale, D.J. Robbins, P.J. Pearson, R. Greef, Optical properties of porous silicon films formed in p-type degenerate and non-degenerate silicon, Journal of Physics C. 17 (1984) 6535–6552.
[3] L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters 57 (1990) 1046–1048.
[4] L.T. Canham, Properties of Porous Silicon, Institution of Engineering and Technology, (1997).
[5] G. Belomoin, J. Terrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, L. Wagner, L. Mitas, M.H. Nayfeh, Observation of a magic discrete family of ultrabright Si nanoparticles, Applied Physics Letters 80 (2002) 841–843.
[6] Y. Kanemitsu, Light emission from porous silicon and related materials, Physics Reports 263 (1995) 1–91.
[7] J.G.C. Veinot, Synthesis surface functionalization and properties of freestanding silicon nanocrystals, Chemical Communications 40 (2006) 4160–4168.
[8] M.H. Nayfeh, L. Mitas, Silicon Nanoparticles: New Photonic and Electronic Material at the Transition Between Solid and Molecule. In ed. V.Kumar, Nanosilicon, pp. 3–78. Elsevier, Amsterdam, (2007).
[9] H. Wong, V. Filip, C.K. Wong, P.S. Chung, Silicon integrated photonics begins to revolutionize, Microelectronics Reliability 47 (2007) 1–10.
[10] C. Marschner, J. Baumgartner, A. Wallner,
Structurally and conformationally defined small methyl polysilanes, Dalton Trans 48 (2006) 5667– 5674.
[11] H. Suzuki, S. Hoshino, K. Furukawa, K. Ebata, C.H. Yuan, I. Bleyl, Polysilane light-emitting diodes, Polymers advanced technologies 11 (2000) 460–467.
[12] F. Schauer, I. Kuritka, N. Dokoupil, P. Horv´ath, Nanostructural effects in plasmatically prepared polysilylenes, Physica E 14 (2002) 272– 276.
[13] B. Delley, E.F. Steigmeier, Size dependence of band gaps in silicon nanostructures, Applied Physics. Letters 67 (1995) 2370-2372.
[14] F. Marsusi, M. Qasemnazhand, Sila-fulleranes: promising chemically active fullerene analogs, Nanotechnology 27 (2016): 275704-275704.
[15] M. Ohara, K. Koyasu, A. Nakajima, K. Kaya, Geometric and electronic structures of metal (M)-doped silicon clusters (M=Ti, Hf, Mo and W), Chemical Physics Letters 371 (2003) 490-497.
[16] V. Kumar, Y. Kawazoe, Hydrogenated Silicon Fullerenes: Effects of H on the Stability of Metal-Encapsulated Silicon Clusters, Physical Review Letters 90 (2003) 055502.
[17] V. Kumar, Y. Kawazoe, Metal-Encapsulated Fullerenelike and Cubic Caged Clusters of Silicon, Physical Review Letters 87 (2001) 045503.
[18] V. Kumar, Y. Kawazoe, Magic behavior of Si15M and Si16M (M=Cr, Mo, and W) clusters, Physical Review B 65 (2002) 073404.
[19] V. Kumar, C. Majumder, Y. Kawazoe, M2Si16, M=Ti, Zr, Hf: π conjugation, ionization potentials and electron affinities, Chemical Physics Letters 363 (2002) 319-322.
[20] V. Kumar, Y. Kawazoe, Metal-encapsulated icosahedral superatoms of germanium and tin with large gaps: Zn2Ge12 and Cd2Sn12, Applied physics letters 80 (2002) 859-861.
[21] م. غریبی، م. مطلبیپور، مبانی و کاربردهای شیمیمحاسباتی، (همراه با آموزش نرمافزارهای:Gaussian GaussView, HyperChem & AIM)، اندیشهسرا،تهران، 1391.
[22] م. محمدی، ل. علی چراغی، ب. خوشنویسان، بررسی خواص الکترونی ، مغناطیسی و اعداد جادویی خوشههای آهن بسیار کوچک : (n,n≤9_(Fe)) محاسبات نظریة تابعی چگالی اسپین–قطبیده، مجلة پژوهش سیستمهای بسذرهای، 6، (1395)، 65-72.
[23] ر. حبیب پور قراچه، ر. وزیری، مطالعة محاسباتی و نظری خواص الکترونی، اسپکتروسکوپی و شیمیایی نانوخوشههای n (n≤4)(ZnO)، مجلة پژوهش سیستمهای بسذرهای، 6، (1395)، 11-20.
[24] G.A. Petersson, D.K. Malick, W.G.Wilson, J.W. Ochterski, J.A. Montgomery Jr, , M.J. Frisch, Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry, The Journal of chemical physics 109 (1998) 10570-10579.
[25] P. Mori-Sánchez, A.J. Cohen, W. Yang, Localization and delocalization errors in density functional theory and implications for band-gap prediction, Physical review letters 100 (2008) 146401.
[26] P.J. Stephens, F.J. Devlin, C. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, The Journal of Physical Chemistry 98 (1994) 11623-11627.
[27] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review B 37 (1988) 785.
[28] R.H.W.J. Ditchfield, W.J. Hehre, J.A. Pople, Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules, The Journal of Chemical Physics 54 (1971) 724-728.
[29] A.J. Karttunen, M. Linnolahti, T. Pakkanen, A, Icosahedral polysilane nanostructures, The Journal of Physical Chemistry C 111 (2007) 2545-2547.
[30] A.D. Zdetsis, Stabilization of large silicon fullerenes and related nanostructures through puckering and poly (oligo) merization, Physical Review B 80 (2009) 195417.
[31] J. Li, H. Bai, N. Yuan, Y. Wu, Y. Ma, P. Xue, Y. Ji, Density functional theory studies of Si36H36 and C36H36 nanocages, International Journal of Quantum Chemistry 114 (2014) 725-730.
[32] S. Niaz, A.D. Zdetsis, Comprehensive ab initio study of electronic, optical, and cohesive properties of silicon quantum dots of various morphologies and sizes up to infinity, The Journal of Physical Chemistry C 120 (2016) 11288-11298.
[33] D.J. Norris, M.G. Bawendi, Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots, Physical Review B 53 (1995) 16338.
[34] م. قاسمنژند، ف. مرصوصی، بررسی نظری خواص اپتوالکترونی نانو ذرات سیلیسیومی با استفاده از نظریة تابعی چگالی، پایاننامه کارشناسی ارشد دانشگاه صنعتی امیرکبیر، (1393).
[35] J. Romero, M. Llansola-Portoles, M. Laura, D. Arciprete, H.B Rodriguez, A.L. Moore, M.C. Gonzalez, Photoluminescent 1–2 nm Sized Silicon Nanoparticles: A Surface-Dependent System, Chemistry of Materials 25 (2013) 3488–3498.
[36] J. Tillmann, J.H. Wender, U. Bahr, M. Bolte, H.W. Lerner, M.C. Holthausen, M. Wagner, One‐Step Synthesis of a [20] Silafullerane with an Endohedral Chloride Ion, Angewandte Chemie 127 (2015) 5519-5523.