Theoretical Study of Opto-Electronic properties of Silafulleranes Using Density Functional Theory

Document Type : Full length research Paper

Authors

1 Amirkabir University Of Technology

2 Department of Physics, Amirkabir University of Technology

Abstract

In the following study the typical optical properties of silicon nanoparticles, known as Hydrogenated sila-Fullerene Clusters, have been evaluated using computer simulation.The density functional theory has been selected as theoretical technique, which has been shown in recent decade as a reliable quantum many body approximation in prediction of optical and electronic properties of materials. All calculations have been done using Gaussian software, under Linux operating system. Also, GaussView software has been applied as the graphical interface in our calculations. The Results show that there is a little change in the optical gaps versus the size of particles. It is found that the optical gaps of those isomers with jointed-hexagonal rings are a little larger than their corresponding counter parts.

Keywords


 
[1] P.Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Springer, (2005).
 
[2] C. Pickering, M.I.J. Beale, D.J. Robbins, P.J. Pearson, R. Greef, Optical properties of porous silicon films formed in p-type degenerate and non-degenerate silicon, Journal of Physics C. 17 (1984) 6535–6552.
 
[3] L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters 57 (1990) 1046–1048.
 
[4] L.T. Canham, Properties of Porous Silicon, Institution of Engineering and Technology, (1997).
 
[5] G. Belomoin, J. Terrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, L. Wagner, L. Mitas, M.H. Nayfeh, Observation of a magic discrete family of ultrabright Si nanoparticles, Applied Physics Letters 80 (2002) 841–843.
 
[6] Y. Kanemitsu, Light emission from porous silicon and related materials, Physics Reports 263 (1995) 1–91.
 
[7] J.G.C. Veinot, Synthesis surface functionalization and properties of freestanding silicon nanocrystals, Chemical Communications 40 (2006) 4160–4168.
 
[8] M.H. Nayfeh, L. Mitas, Silicon Nanoparticles: New Photonic and Electronic Material at the Transition Between Solid and Molecule. In ed. V.Kumar, Nanosilicon, pp. 3–78. Elsevier, Amsterdam, (2007).
 
[9] H. Wong, V. Filip, C.K. Wong, P.S. Chung, Silicon integrated photonics begins to revolutionize, Microelectronics Reliability 47 (2007) 1–10.
 
[10] C. Marschner, J. Baumgartner, A. Wallner,
Structurally and conformationally defined small methyl polysilanes, Dalton Trans 48 (2006) 5667– 5674.
 
[11] H. Suzuki, S. Hoshino, K. Furukawa, K. Ebata, C.H. Yuan, I. Bleyl, Polysilane light-emitting diodes, Polymers advanced technologies 11 (2000) 460–467.
 
[12] F. Schauer, I. Kuritka, N. Dokoupil, P. Horv´ath, Nanostructural effects in plasmatically prepared polysilylenes, Physica E 14 (2002) 272– 276.
 
[13] B. Delley, E.F. Steigmeier, Size dependence of band gaps in silicon nanostructures, Applied Physics. Letters 67 (1995) 2370-2372.
 
[14] F. Marsusi, M. Qasemnazhand, Sila-fulleranes: promising chemically active fullerene analogs, Nanotechnology 27 (2016): 275704-275704.
[15] M. Ohara, K. Koyasu, A. Nakajima, K. Kaya, Geometric and electronic structures of metal (M)-doped silicon clusters (M=Ti, Hf, Mo and W), Chemical Physics Letters 371 (2003) 490-497.
 
[16] V. Kumar, Y. Kawazoe, Hydrogenated Silicon Fullerenes: Effects of H on the Stability of Metal-Encapsulated Silicon Clusters, Physical Review Letters 90 (2003) 055502.
 
[17] V. Kumar, Y. Kawazoe, Metal-Encapsulated Fullerenelike and Cubic Caged Clusters of Silicon, Physical Review Letters 87 (2001) 045503.
 
[18] V. Kumar, Y. Kawazoe, Magic behavior of Si15M and Si16M (M=Cr, Mo, and W) clusters, Physical Review B 65 (2002) 073404.
 
[19] V. Kumar, C. Majumder, Y. Kawazoe, M2Si16, M=Ti, Zr, Hf: π conjugation, ionization potentials and electron affinities, Chemical Physics Letters 363 (2002) 319-322.
 
[20] V. Kumar, Y. Kawazoe, Metal-encapsulated icosahedral superatoms of germanium and tin with large gaps: Zn2Ge12 and Cd2Sn12, Applied physics letters 80 (2002) 859-861.
 
[21] م. غریبی، م. مطلبی‌پور، مبانی و کاربردهای شیمیمحاسباتی، (همراه با آموزش نرم‌افزارهای:Gaussian GaussView, HyperChem & AIMاندیشه‌سرا،تهران، 1391.‌
 
[22] م. محمدی، ل. علی چراغی، ب. خوشنویسان، بررسی خواص الکترونی ، مغناطیسی و اعداد جادویی خوشه‌های آهن بسیار کوچک : (n,n≤9_(Fe)) محاسبات نظریة تابعی چگالی اسپین–قطبیده، مجلة پژوهش سیستم‌های بس‌ذره‌ای، 6، (1395)، 65-72.
 
[23] ر. حبیب پور قراچه، ر. وزیری، مطالعة محاسباتی و نظری خواص الکترونی، اسپکتروسکوپی و شیمیایی نانوخوشه‌های n (n≤4)(ZnO)، مجلة پژوهش سیستم‌های بس‌ذره‌ای، 6، (1395)، 11-20.
 
[24] G.A. Petersson, D.K. Malick, W.G.Wilson, J.W. Ochterski, J.A. Montgomery Jr, , M.J. Frisch, Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry, The Journal of chemical physics 109 (1998) 10570-10579.
 
[25] P. Mori-Sánchez, A.J. Cohen, W. Yang, Localization and delocalization errors in density functional theory and implications for band-gap prediction, Physical review letters 100 (2008) 146401.
 
[26] P.J. Stephens, F.J. Devlin, C. Chabalowski,  M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, The Journal of Physical Chemistry 98 (1994) 11623-11627.
 
[27] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review B 37 (1988) 785.
 
 
[28] R.H.W.J. Ditchfield, W.J. Hehre, J.A. Pople, Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules, The Journal of Chemical Physics 54 (1971) 724-728.
 
[29] A.J. Karttunen, M. Linnolahti, T. Pakkanen, A, Icosahedral polysilane nanostructures, The Journal of Physical Chemistry C 111 (2007) 2545-2547.
 
[30] A.D. Zdetsis, Stabilization of large silicon fullerenes and related nanostructures through puckering and poly (oligo) merization, Physical Review B 80 (2009) 195417.
 
[31] J. Li, H. Bai, N. Yuan, Y. Wu, Y. Ma, P. Xue, Y. Ji, Density functional theory studies of Si36H36 and C36H36 nanocages, International Journal of Quantum Chemistry 114 (2014) 725-730.
 
[32] S. Niaz, A.D. Zdetsis, Comprehensive ab initio study of electronic, optical, and cohesive properties of silicon quantum dots of various morphologies and sizes up to infinity, The Journal of Physical Chemistry C 120 (2016) 11288-11298.
[33] D.J. Norris, M.G. Bawendi, Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots, Physical Review B 53 (1995) 16338.
 
[34] م. قاسم‌نژند، ف. مرصوصی، بررسی نظری خواص اپتوالکترونی نانو ذرات سیلیسیومی با استفاده از نظریة تابعی چگالی، پایان‌نامه کارشناسی ارشد دانشگاه صنعتی امیرکبیر، (1393).
 
[35] J. Romero, M. Llansola-Portoles, M. Laura, D. Arciprete, H.B Rodriguez, A.L. Moore, M.C. Gonzalez, Photoluminescent 1–2 nm Sized Silicon Nanoparticles: A Surface-Dependent System, Chemistry of Materials 25 (2013) 3488–3498.
 
[36] J. Tillmann, J.H. Wender, U. Bahr, M. Bolte, H.W. Lerner, M.C. Holthausen, M. Wagner, One‐Step Synthesis of a [20] Silafullerane with an Endohedral Chloride Ion, Angewandte Chemie 127 (2015) 5519-5523.