[1] J.N. Munday, H.A. Atwater, Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings, Nano Letters 11 (2011) 2195-2201.
[2] J.R. Nagel, M.A. Scarpulla, Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticle, Optics Express 18 (2010) A139-A146.
[3] G. Gomard, E. Drouard, X. Meng, A. Kaminiski, A. Fave, M. Lemiti, Garcia, E. Caurel, C. Seassal, Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells, Applied Physics 108 (2010) 123102-123110.
[4] H. Ding, L. Lalouat, B.G. Acevedo, R. Orobtchouk, Ch. Seassal, and E. Drouard, Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells, Optics Express 24 (2016) A650-A666.
[5] H.A. Atwater, A. Polman, Plasmonic for improved photovoltaic devices, Nature Materials 9 (2010) 205-213.
[6] V.E. Ferry, J.N. Munday, H. Atwater, Design consideration for plasmonic photovoltaics, Advanced materials 22 (2010) 4794-4808.
[7] H. Shen, P. Bienstman, and B. Maes, Plasmonic absorption enhancement in organic solar cells with thin active layers, Applied Physics 106 (2009) 073109-073114.
[8] C. Rockstuhl, S. Fehr, F. Lederer, Absorption enhancement in solar cells by localized plasmon polaritons, Applied Physics 104 (2008) 123102-123109.
[9] J.Y. Lee, P. Peumans, The origin of enhanced optical absorption in solar cells with metal nanowires embedded in the active layer, Optics Express 18 (2010) 10078-10087.
[10] R.A. Pala, J. White, E. Barnard, J. Liu, and M.L. Brongersma, Design of plasmonic thin-film solar cells with broadband absorption enhancements, Advanced materials 21(2009) 3504–3509.
[11] M.S. Branham, W.C. Hsu, S. Yerci, J. Loomis, S.V. Boriskina, B.R. Hoard, S.E. Han, and G. Chen, 15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures, Advanced materials 27 (2015) 2182–2188.
[12] H. Li, Q. Wang, J. Chen, J. Krc, W.J. Soppe, Light trapping in amorphous silicon solar cells with periodic grating structures, Optics Communications 285 (2012) 808–815.
[13] W. Wang, K. Reinhardt, Y. Lu, and Sh. Chen, Broadband light absorption enhancement in thin-film silicon solar cells, Nano Letters 10 (2010) 2012-2018.
[14] S. Xiao, E. Stassen, N.A. Mortensen, Ultrathin silicon solar cells with enhanced photocurrents assisted by plasmonic nanostructures, Journal of Nanophotonics 6 (2012) 061503-061510.
[15] J. Chen, Q. Wang, H. Li, Microstructured design of metallic diffraction gratings for light trapping in thin-film silicon solar cells, Optics Communications 283 (2010) 5236–5244.
[16] M. Wellenzohn, R. Hainberger, Light trapping by backside diffraction gratings in silicon solar cells revisited, Optics Express 20 (2011) A20-A27.
[17] N.N. Huu, M. Cada, J. Pistora, Investigation of optical absorptance of one dimensionally periodic silicon gratings as solar absorbers for solar cells, Optics Express 22 (2013) A68-A79.
[18] M.B. Duhring, N.A. Mortensen, O. Sigmund, Plasmonic versus dielectric enhancement in thin–film solar cells, Applied Physics Letters 100 (2012) 211914-211918.
[19] J. Grandidier, D.M. Callahan, J.N. Munday, H.A. Atwater, Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres, Advanced materials 23 (2011) 1272–1276.
[20] G. Zheng, L. Xu, M. Lai, Y. Chen, Y. Liu, X. Li, Enhancement of optical absorption in amorphous silicon thin film solar cells with periodical nanorods to increase optical path length, Optics Communications 285 (2012) 2755–2759.
[21] B. Wang, L. Chen, L. Lei, J. Zhou, Dielectric grating with a metal slab for high efficiency in optical communication, Optoelectronics and Advanced Materials-Rapid Communication (2013) 367–370.
[22] A. Abass, K.Q. Le, A. Alu, M. Burgelman, B. Maes, Dual-interface gratings for broadband absorption enhancement in thin-film solar cells, Physical Review B 85 (2012)115449–115456.
[23] X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, Ch. Seassal, Combined front and back diffraction gratings for broad band light trapping in thin film solar cell, Optics Express 20 (2012) A560–A571.
[24] W. Zhang, G. Zheng, L. Jiang, X. Li, Combined front diffraction and back blazed gratings to enhance broad band light harvesting in thin film solar cells, Optics Communications 298 (2013)250–253.
[25] Ch.S. Schuster, P. Kowalczewski, E.R. Martins, M. Patrini, M.G. Scullion, M. Liscidini, L. Lewis, Ch. Reardon, L.C. Andreani, T.F. Krauss, Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique, Optics Express 21 (2013) A433-A438.
[26] R. Chriki, A. Yanai, J. Shappir, U. Levy, Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure, Optics Express 21 (2013) A382-A391.
[27] S. Jain, V. Depauw, V.D. Miljkovic, A. Dmitriev, Ch. Trompoukis, I. Gordon, P.V. Dorpe, O.El. Daif, Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector, Progress in Photovoltaics: Research and Applications (2014) 1144–1156.
[28] H. Shen, B. Maes, Combined plasmonic gratings in organic solar cells, Optics Express 19(2011)A1202–A1210.
[29] E.R. Martins, J. Li, Y. Liu, J. Zhou, T.F Krauss, Engineering gratings for light trapping in photovoltaics: The supercell concept, Physical Review B 86(2012)041404–041407.
[30] E.R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T.F. Krauss, Deterministic quasi-random nanostructures for photon control, Nature Communications (2013) 2665-2671.
[31] S.A. Maier, Fundamentals and Applications, John Wiley, New York, (2007).
[32] A. Taflove, S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, John Wiley, New York, (2005).
[33] B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, John Wiley, New York, (1991).