Design of Nanoplasmonic Solar Cells based on Optical mode excitation

Document Type : Full length research Paper

Authors

1 Department of Physics, Persian Gulf University, Bushehr, Iran

2 Department of Physics, Faculty of Science, Persian Gulf University, Boushehr, Iran

Abstract

To enhance light absorption in thin film solar cells, we propose and investigate several approaches to design dielectric and plasmonic nanostructures for efficient excitement of numerous optical modes in the solar cells, leading to an increase in the number of absorbed photons within absorbing layer. Two-dimensional Finite Difference Time Domain (2D-FDTD) method is employed to model light interaction with the proposed structures and to investigate the effect of solar cell parameters on the optical modes excitation. It is shown that several optical modes can be excited and adjusted by placing one dimensional dielectric and plasmonic quasi-periodic nanogratings on top and at the bottom of the active layer, respectively.

Keywords

Main Subjects


[1] J.N. Munday, H.A. Atwater, Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings, Nano Letters 11 (2011) 2195-2201.
[2] J.R. Nagel, M.A. Scarpulla, Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticle, Optics Express 18 (2010) A139-A146.
[3] G. Gomard, E. Drouard, X. Meng, A. Kaminiski, A. Fave, M. Lemiti, Garcia, E. Caurel, C. Seassal, Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells, Applied Physics 108 (2010) 123102-123110.
[4] H. Ding, L. Lalouat, B.G. Acevedo, R. Orobtchouk, Ch. Seassal, and E. Drouard, Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells, Optics Express 24 (2016) A650-A666.
[5] H.A. Atwater, A. Polman, Plasmonic for improved photovoltaic devices, Nature Materials 9 (2010) 205-213.
[6] V.E. Ferry, J.N. Munday, H. Atwater, Design consideration for plasmonic photovoltaics, Advanced materials 22 (2010) 4794-4808.
[7] H. Shen, P. Bienstman, and B. Maes, Plasmonic absorption enhancement in organic solar cells with thin active layers, Applied Physics 106 (2009) 073109-073114.
[8] C. Rockstuhl, S. Fehr, F. Lederer, Absorption enhancement in solar cells by localized plasmon polaritons, Applied Physics 104 (2008) 123102-123109.
[9] J.Y. Lee, P. Peumans, The origin of enhanced optical absorption in solar cells with metal nanowires embedded in the active layer, Optics Express 18 (2010) 10078-10087.
[10] R.A. Pala, J. White, E. Barnard, J. Liu, and M.L. Brongersma, Design of plasmonic thin-film solar cells with broadband absorption enhancements, Advanced materials 21(2009) 3504–3509.
[11] M.S. Branham, W.C. Hsu, S. Yerci, J. Loomis, S.V. Boriskina, B.R. Hoard, S.E. Han, and G. Chen, 15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures, Advanced materials 27 (2015) 2182–2188.
[12] H. Li, Q. Wang, J. Chen, J. Krc, W.J. Soppe, Light trapping in amorphous silicon solar cells with periodic grating structures, Optics Communications 285 (2012) 808–815.
[13] W. Wang, K. Reinhardt, Y. Lu, and Sh. Chen, Broadband light absorption enhancement in thin-film silicon solar cells, Nano Letters 10 (2010) 2012-2018.
[14] S. Xiao, E. Stassen, N.A. Mortensen, Ultrathin silicon solar cells with enhanced photocurrents assisted by plasmonic nanostructures, Journal of Nanophotonics 6 (2012) 061503-061510.
[15] J. Chen, Q. Wang, H. Li, Microstructured design of metallic diffraction gratings for light trapping in thin-film silicon solar cells, Optics Communications 283 (2010) 5236–5244.
[16] M. Wellenzohn, R. Hainberger, Light trapping by backside diffraction gratings in silicon solar cells revisited, Optics Express 20 (2011) A20-A27.
[17] N.N. Huu, M. Cada, J. Pistora, Investigation of optical absorptance of one dimensionally periodic silicon gratings as solar absorbers for solar cells, Optics Express 22 (2013) A68-A79.
[18] M.B. Duhring, N.A. Mortensen, O. Sigmund, Plasmonic versus dielectric enhancement in thin–film solar cells, Applied Physics Letters 100 (2012) 211914-211918.
[19] J. Grandidier, D.M. Callahan, J.N. Munday, H.A. Atwater, Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres, Advanced materials 23 (2011) 1272–1276.
[20] G. Zheng, L. Xu, M. Lai, Y. Chen, Y. Liu, X. Li, Enhancement of optical absorption in amorphous silicon thin film solar cells with periodical nanorods to increase optical path length, Optics Communications 285 (2012) 2755–2759.
[21] B. Wang, L. Chen, L. Lei, J. Zhou, Dielectric grating with a metal slab for high efficiency in optical communication, Optoelectronics and Advanced Materials-Rapid Communication (2013) 367–370.
[22] A. Abass, K.Q. Le, A. Alu, M. Burgelman, B. Maes, Dual-interface gratings for broadband absorption enhancement in thin-film solar cells, Physical Review B 85 (2012)115449–115456.
[23] X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, Ch. Seassal, Combined front and back diffraction gratings for broad band light trapping in thin film solar cell, Optics Express 20 (2012) A560–A571.
[24] W. Zhang, G. Zheng, L. Jiang, X. Li, Combined front diffraction and back blazed gratings to enhance broad band light harvesting in thin film solar cells, Optics Communications 298 (2013)250–253.
[25] Ch.S. Schuster, P. Kowalczewski, E.R. Martins, M. Patrini, M.G. Scullion, M. Liscidini, L. Lewis, Ch. Reardon, L.C. Andreani, T.F. Krauss, Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique, Optics Express 21 (2013) A433-A438.
[26] R. Chriki, A. Yanai, J. Shappir, U. Levy, Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure, Optics Express 21 (2013) A382-A391.
[27] S. Jain, V. Depauw, V.D. Miljkovic, A. Dmitriev, Ch. Trompoukis, I. Gordon, P.V. Dorpe, O.El. Daif, Broadband absorption enhancement in ultra-thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector, Progress in Photovoltaics: Research and Applications (2014) 1144–1156.
[28] H. Shen, B. Maes, Combined plasmonic gratings in organic solar cells, Optics Express 19(2011)A1202–A1210.
[29] E.R. Martins, J. Li, Y. Liu, J. Zhou, T.F Krauss, Engineering gratings for light trapping in photovoltaics: The supercell concept, Physical Review B 86(2012)041404–041407.
[30] E.R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T.F. Krauss, Deterministic quasi-random nanostructures for photon control, Nature Communications (2013) 2665-2671.
[31] S.A. Maier, Fundamentals and Applications, John Wiley, New York, (2007).
[32] A. Taflove, S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, John Wiley, New York, (2005).
[33] B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, John Wiley, New York, (1991).