[1] K.S. Novoselov, A.K. Geim, S.Morozov, D. Jiang, Y. Zhang, S. Dubonos, I.Grigorieva, A. Firsov, Science 306 (2004) 666-669.
[2] S.Y. Zhou, G.H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.H. Lee, F. Guinea, A.H. Castro Neto, A. Lanzara, Substrate-induced band gap opening in epitaxial graphene, Nature Materials 6 (2007) 770-775
[3] Y.W. Son, M.L. Cohen, S.G. Louie, Energy Gaps in Graphene Nanoribbons, Physical Review Letters 97 (2006) 216803
[4] V.M. Pereira, A.H. Castro Neto, N.M.R. Peres, A tight-binding approach to uniaxial strain in graphene, Physical Review B 80 (2009) 045401
[5] F. Xia, D.B. Farmer, Y. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature, Nano Letters 10 (2010) 715
[6] Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable band gap in bilayer graphene, Nature 459 (2009) 820
[7] Y. Fan, M. Zhao, Z. Wang, X. Zhang, H. Zhang, Tunable electronic structure of graphene/boron nitride hetro bilayers, Applied Physics Letters 98 (2011) 083103.
[8]E.Rollings, G.-H.Gweon, S.Y.Zhou, B.S.Mun, J.L.McChesney, B.S.Hussain, A.V.Fedorov, P.N.First, W.A.de Heer, A.Lanzara, Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate, The Journal of Physics and Chemistry of Solids 67 (2006) 2172–2177.
[9] Y. Ma, Y. Dai, W. Wei, C. Niu, L. Yu, B. Huang, First-Principles Study of the Graphene@MoSe2Heterobilayers, The Journal of Physics and Chemistry of Solids C 115 (2011) 20237–20241.
[10] S.S. Li, C.W. Zhang, First-principles study of graphene adsorbed on WS2 monolayer Journal of Applied Physics 114 (2013) 183709.
[11] M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. William, Atomic Structure of Graphene on SiO2, Nano Letters 7 (2007) 1643–1648.
[12] H. Yanagisawa, T. Tanaka, Y. Ishida, E. Rokuta, S. Otani, C. Oshima, Phonon dispersion curves of stable and metastable BC3 honeycomb epitaxial sheets and their chemical bonding: Experiment and theory, Physical Review B 73 (2006) 045412.
[13] D. Tomanek, R.M. Wentzcovitch, S.G. Louie, M.L. Cohen, Calculation of electronic and structural properties of BC3, Physical Review B 37 (1988) 3134.
[15] Y. Ding, Y. Wang, J. Ni, Electronic structures of BC3 nanoribbons, Applied Physics Letters 94 (2009) 073111
[16] Y. Ding, J. Ni, Tuning Electronic Properties of Hydro-Boron−Carbon Compounds by Hydrogen and Boron Contents: A First Principles Study, The Journal of Physical Chemistry C 113 (2009) 18468.
[17] Y. Ding, Y. Wang, J. Ni, Structural, Electronic, and Magnetic Properties of Defects in the BC3 Sheet from First Principles, The Journal of Physical Chemistry C 114 (2010) 12416-12421.
[18] X. Lin, J. Ni, Electronic and magnetic proper ties of substitutionally Fe-, Co-, and Ni-doped BC3 honeycomb structure, Journal of Applied Physics 111 (2012) 03430.
[19] S. Dutta, K. Wakabayashi, Anomalous energy-gap behavior of armchair BC3 ribbons due to enhanced
p-conjugation, The Journal of Materials Chemistry 22 (2012) 20881.
[20] S. Dutta, K. Wakabayashi, Edge state induced metallicity in zigzag BC3 ribbons, The Journal of Materials Chemistry C 1 (2013) 4854–4857.
[21] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k code, Vienna University of Technology, Inst. of Physical and Theoretical Chemistry, Getreidemarkt 9/156, A-1060 Vienna/Austria.
[22] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B 23 (1981) 5048-5079.
[23] S.-s. Li, C.-w. Zhang, W.-x. Ji, F. Li, P.-j. Wang, Tunable electronic properties induced by a defect-substrate in graphene/BC3 heterobilayers, Physical Chemistry Chemical Physics, 16 (2014) 22861-22866.
[24] G.Y. Guo, K.C. Chu, D.-s. Wang, C.-g. Duan, Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations, Physical Review B, 69 (2004) 205416.