Quantum Thermodynamics of an atom-cavity system with Jaynes-Cummings interaction

Document Type : Full length research Paper

Author

Assistant professor of physics - Shahrood University of Technology.

Abstract

In this paper we give an introduction to the ideas of quantum thermodynamics, using only basic concepts from quantum and statistical mechanics. Then, we discuss the framework of non-equilibrium processes in quantum systems and introduce how to calculate quantities such as work and irreversible entropy in these processes. We then apply these results to the problem of atom-cavity system while their interaction describe by Jaynes-Cummings model with both weak and strong atom-cavity coupling. Here, we introduce the concept of quantum thermodynamics of close quantum system and so by considering a good cavity, coupling of cavity modes with its reservoir has been omitted.

Keywords

Main Subjects


 
[1] S.J. Blundell, K.M. Blundell, Concepts in Thermal Physics, Oxford University Press, New York , (2006).
[2] Sheldon Ross, A First Course in Probability, 8th ed. Pearson, Upper Saddle River, NJ, (2010).
[3] J.W. Gibbs, Elementary principles of statistical mechanics, reprinted ed. Dover, Mineola, (2014).
 [4] C. Jarzynski, Nonequilibrium Equality for Free Energy Differences, Physical Review Letters 78 (1997) 2690–2693.
 [5] G.E. Crooks, Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems, Journal of Statistical Physics 90 (1998) 1481–1487.
[6] F. Douarche, S. Ciliberto, a. Petrosyan, I. Rabbiosi, An experimental test of the Jarzynski equality in a mechanical experiment, Europhysics Letters 70 (2005) 593–599.
[7] R. Dorner, J. Goold, C. Cormick, M. Paternostro, V. Vedral, Emergent Thermodynamics in a Quenched Quantum Many-Body System, Physical Review Letters 109 (2012) 160601-160605.
 [8] F. Plastina, A. Alecce, T.J.G. Apollaro, G. Falcone, G. Francica, F. Galve, N. Lo Gullo, R. Zambrini, Irreversible Work and Inner Friction in Quantum Thermodynamic Processes, Physical Review Letters 113 (2014) 260601-260605.
[9] W.L. Ribeiro, G.T. Landi, F.L. Semiao, Quantum thermodynamics and work fluctuations with applications to magnetic resonance, American Journal of Physics 84 (2016) 948-959.
[10] P.A. Camati, J.P.S. Peterson, T.B. Batalhao, K. Micadei, A.M. Souza, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Experimental rectification of entropy production by a Maxwell’s Demon in a quantum system, Physical Review Letters 117 (2016) 240502-240506.
[11] J. Salmilehto, P. Solinas, M. Möttönen, Quantum driving and work, Physical Review E 89 (2014) 052128-052135.
[12] N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q. Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, B. Huard, Observing a quantum Maxwell demon at work, Proceedings of the National Academy of Sciences of the United States of America114, (2017) 7561-7564.
[13] L. Villa, G. De Chiara, Cavity assisted measurements of heat and work in optical lattices, Quantum 2 (2018) 42-52.
[14] J. Ye, D.W. Vernooy, H.J. Kimble, Trapping of Single Atoms in Cavity QED, Physical Review Letters 83 (1999) 4987-4991.
[15] J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, Quantum superposition of distinct macroscopic states, Nature 406 (2000) 43-46.  
[16] C.H. van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd, J.E. Mooij, Quantum Superposition of Macroscopic Persistent-Current States, Science 290 (2000) 773-777.
[17] A. Boca, R. Miller, K.M. Birnbaum, A. D. Boozer, J. McKeever, H.J. Kimble, Observation of the Vacuum Rabi Spectrum for One Trapped Atom, Physical Review Letters 93 (2004) 233603-233607.
[18] E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proceedings of the IEEE 51 (1963) 89 - 109.
[19] F. Deppe, M. Mariantoni, E.P. Menzel, A. Marx, S. Saito, K. Kakuyanagi,
H. Tanaka, T. Meno, K. Semba, H. Takayanagi, E. Solano and R. Gross, Two photon probe of the Jaynes–Cummings model and controlled symmetry breaking in circuit QED, Nature Physics 4 (2008) 686 - 691. 
[20] J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, Alexandre Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Charge-insensitive qubit design derived from the Cooper pair box, Physical Review A 76 (2007) 042319-042338.
[21] A. Blais, J. Gambetta, A. Wallraff, D.I. Schuster, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Quantum information processing with circuit quantum electrodynamics, Physical Review A 75 (2007) 032329-032350.
[22] M.O. Scully, M.S. Zubairy, Quantum Optics, Cambridge University Press, (1997).
[23] A. Blais, R.Sh. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Physical Review A 69 (2004) 062320-062334.