[1] R.M. Meyer, S.K. Loyalka, M.A. Prelas, Potential well structure in spherical inertial electrostatic confinement device,IEEE Transactions on plasma science 33 (2005)1377-1394.
[2] W.M. Nevins, Can inertial electrostatic confinement work beyond the ion-ion collisional time scale? Physics Plasmas 2 (1995)3804-3819.
[3] T.H. Rider, A general critique of inertial-electrostatic confinement fusion systems, Physics Plasmas 2 (1995)1853-1909.
[4] R.P. Ashley, G.L. Kulcinski, J.F. Santarius, S. Krupakar Murali, G. Piefer, R. Radel, Steady-state $D-^{3}He$ proton production in an IEC fusion device, Fusion Technology 39(2001) 546-551.
[5] R.L. Hirsch, Experimental studies of a deep, negative, electrostatic potential well in spherical geometry, Physics Fluids 11(1968) 2486-2490.
[6] G.H. Miley, H. Momota, Virtual cathode in a stationary spherical inertial electrostatic confinement, Fusion Science Technology 40 (2001) 56-65.
[7] Y. Gu, G.H. Miley, Experimental study of potential structure in a spherical IEC fusion device, IEEE Transactions on plasma science 28 (2000) 331-346.
[8] H. Matsuura, K. Funakoshi, Y. Nakao, Correlation between ion/electron distribution functions and neutron production rate in spherical inertial electrostatic confinement plasmas, Nuclear Fusion 43(2003) 989-998.
[9] K. Noborio, Y. Yamamoto, S. Konshi, One Dimensional simulation of an Inertial Electrostatic Confinement Fusion Device at Low Gas Pressure Operation, Fusion Science and Technology 47(2005) 1280-1284.
[10] S.K. Murali, B.B. Cipiti, J.F. Santarius, G.L. Kulcinski, Study of fusion regimes in an inertial electrostatic confinement device using the new eclipse disc diagnostic, Physics Plasmas 13(2006) 053111 1-7.
[11] Y. Gu, G.H. Miley, Experimental study of potential structure in a spherical IEC fusion device, IEEE Transactions on plasma science 28(1) (2000) 331-346.
[12] R.L. Hirsh, Inertial-electrostatic confinement of ionized fusion gases, Journal of Applied Physics 38(1967) 4522-4534.
[13] H. Matsuura, T. Takaki, Y. Nakao, K. Kudo, Radial profile of neutron production rate in spherical inertial electrostatic confinement plasmas. Fusion Technology 39(2001)1167-1173.
[14] J.H. Nadler, Space-charge dynamics and neutron generation in an inertial-electrostatic confinement device, Ph.D. dissertation, University of Illinois-Urbana-Champaign (1992).
[15] T.A. Thorson, R.D. Durst, R.J. Fonck, L.P. Wainwright, Convergence electrostatic potential and density measurement in a spherical convergent ion focus, Physics Plasmas 4 (1997) 4-5.
[16] K. Yoshikawa, K. Takiyama, T. Koyama and et al., Measurement of strongly localized potential well profiles in an inertial-electrostatic fusion neutron source, Nuclear Fusion 41 (2001) 136-141.
[17] Yu. K. Kurilenkov, V.P. Tarakanov, M. Skowronek S.Yu.Guskov, J. Dufty, Inertial electrostatic confinement and DD fusion at inter electrode media of nanosecond vaccum discharge. PIC simulations and experiment, Journal of Physics A 42(2009)4041.
[18] M.A. Ramzanpour, M.R. Pahlavani Evaluation of the neutron production rate using D–D and D–T fuel in an inertial electrostatic confinement fusion device, Chinese Journal of Physics 56(2018) 23-29.
[19] M. Ohnishi, K.H. Sato, Y. Yamamoto, K. Yoshikawa, Correlation between potential well structure and neutron production in inertial electrostatic confinement fusion, Nuclear Fusion 37(1997) 611-620.
[20] H. Matsuura, T. Takaki, K. Funakoshi, Y. Nakao, K. Kudo, Ion distribution function and radial profile of neutron production rate in spherical inertial electrostatic confinement plasmas, Nuclear Fusion 40(2000)1951-1955.
[21] B.H. Duane, Fusion Cross-Section Theory BNWL-1685, Battelle Pacific Northwest Laboratories (1972).