Propagation of electrostatic drift waves in nonuniform and nonideal quantum magnetoplasma

Document Type : Full length research Paper

Authors

1 Imam Khomeini International University

2 Physics Dep. Imam Khomeini International University, Qazvin. Iran

Abstract

Abstract
In this work, the propagation of the electrostatic drift waves is studied in a non-uniform quantum plasma medium. The analytical expression for dispersion relation of the waves is derived by taking into account the resistivity and quantum aspects of the medium. It has been shown that the quantum effects, alter the dispersion relation of the drift modes. The result is the appearance of modified electron diamagnetic drift waves as well as ion acoustic waves. Furthermore, the velocities of these waves are greater than their classical case. The graphical analysis also revealed that the quantum corrections cause electron branch of the drift waves to become propagative. In the presence of resistivity, the electron drift wave is always unstable, whereas the ion branch of the drift wave becomes damped. On the other hand, in the absence of quantum aspects and given zero resistivity, the two generated ion acoustic and electron drift waves are completely stable.

Keywords

Main Subjects


 
[1] W. Horton, Nonlinear drift waves and transport in magnetized plasmas, Physics Reports 192 (1990) 1-177.
 
[2] N.A. Krall, A.W. Trivelpiece, Principles of plasma physics, Mc Graw-Hill Company, (1973).
 
[3]م. شاه منصوری، تأثیر پتانسیل تبادلی بر امواج الکتروستاتیکی در پلاسمای نیم‌رسانای کوآنتومی، مجلة پژوهش سیستم‌های بس‌ذره‌ای 7 (1396)، 103ـ95.
[3] M. Shahmansouri, Effect of exchange potential on the electrostatic waves in quantum semiconductor plasmas, Journal of Research on Many-body Systems 7 (2017) 95-103.
 
[4] G. Chabrier, F. Douchin, A.Y. Potekhin, Dense astrophysical plasmas, Journal of Physics: Condensed Matter 14 (2002) 9133-9139.
 
[5] Y.D. Jung, Quantum-mechanical effects on electron–electron scattering in dense high- temperature plasmas, Physics of Plasmas 8 (2001) 3842-3844.
 
[6] D. Kremp, Th. Bornath, M. Bonitz and M. Schlanges, Quantum kinetic theory of plasmas in strong laser fields, Physical Reveiw E 60 (1994) 4725-4732.     
 
[7] Li. Wenhui, P.J. Tanner, T.F.     Gallagher, Dipole-Dipole Excitation and Ionization in an Ultracold Gas of Rydberg Atoms, Physical Review Letters 94 (2005) 173001-173005.
 
 [8] H. G.Craighead, Nanoelectromechanical Systems, Science 290 (2000) 1532-1535.
 
[9] B. Shokri and A.A. Rukhadze, Quantum drift waves, Physics of Plasmas 6 (1999) 4467-4472.
 
[10] F. Haas, L.G. Garcia, J. Goedert, G. Manfredi, Quantum ion-acousti waves, Physics of Plasmas 10 (2003) 3858-3867.
 
[11] N. Suh, M.R. Feix, P. Bertrand, Numerical simulation of the quantum Liouville-Poisson system, Journal of Computational. Physics 94 (1991)403-418.
 
[12] Z. Wu, H. Ren, J. Cao, P.K. Chu, Electrostatic drift waves in Nonuniform quantum magnetized plasmas, Physics of Plasmas 15 (2008) 082103-1-6.
 
[13] F. Hass, A magnetohydrodynamic model for quantum plasmas, Physics of Plasmas 12 (2005) 062117-1-9.
 [14] J.A. Bittencourt, Fundamentals of Plasma Physics(3th Ed), Springer-Ver1ag New York )2004(.