[1] J.M. Smith, E. Szäthmáry, The Major Transitions in Evolution, Oxford University Press, Oxford, (1997).
[2] S. Romaine, the Evolution of Linguistic Complexity in Pidgin and Creole Languages, in: The Evolution of Human Languages (ed. J.A. Hawkins, M. Gell-Mann), Addison Wesley, Redwood City, (1992) 213-238.
[3] M.A. Montemurro, D.H. Zanette, Complexity and Universality in the Long-Range Order of Words, arXiv: 1503.01129v1 (2015).
[4] G. Zipf, Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology, Addison-Wesley Press, Cambridge, (1949).
[5] H.S. Heaps, Information Retrieval: Computational and Theoretical Aspects, Academic Press, New York, (2001).
[6] M. Ortuño, P. Carpena, P. Bernaola-Galvàn, E. Muñoz, A.M. Somoza, Keyword Detection in Natural Languages and DNA, Europhysics Letters 57 (2002) 759-764.
[7] T. Cover, J. Thomas, Elements of Information Theory, John Wiley & Sons, New York, (1991).
[8] http://ganjoor.net/.
[9] E. Najafi, A.H. Darooneh, The Fractal Patterns of Words in a Text: A Method for Automatic Keyword Extraction, PLoS ONE 10 (2015) e0130617.
[10] M.F. Barnsley, Fractals Everywhere, Morgan Kaufmann, San Francisco, (1993).
[12] S.T. Piantadosi, Zipf’s Word Frequency Law in Natural Language: A Critical Review and Future Directions, Psychonomic Bulletin & Review 21 (2014) 1112-1130.
[13] D.H. Zanette, Statistical Patterns inWritten Language, arXiv: 1412.3336v1 (2014).
[14] I. Moreno-Sánchez, F. Font-Clos, A. Corral, Large-Scale Analysis of Zipf’s Law in English Texts, arXiv: 1509.04486v1 (2015).
[15] J. Baixeries, B. Elvevåg, R. Ferrer-i-Cancho, The Evolution of the Exponent of Zipf’s Law in Language Ontogeny, PLoS ONE 8 (2013). e53227.
[16] F. Font-Clos, A. Corral, Log-Log Convexity of Type-Token Growth in Zipf’s Systems, Physical Review Letters 114 (2015) 238701.
[17] A. Corral, G. Boleda, R. Ferrer-i-Cancho, Zipf’s Law for Word Frequencies: Word Forms versus Lemmas in Long Texts, PLoS ONE 10 (2014) e0129031.
[18] A. Gelbukh, G. Sidorov, Zipf and Heaps Laws’ Coefficients Depend on Language, Lecture Notes in Computer Science 2004 (2001) 332-335.
[19] S. Havlin, The Distance Between Zipf Plots, Physica A 216 (1995) 148-150.
[20] A.E. Allahverdyan, W. Deng, Q.A. Wang, Explaining Zipf’s Law via Mental Lexicon, Physical Review E 88 (2013) 062804.
[21] B. Mandelbrot, Information Theory and Psycholinguistics: A Theory of Words Frequencies, Readings in Mathematical Social Science (1968) 350-368.
[22] S. Naranan, W.K. Balasubrahmanyan, Models for Power Law Relations in Linguistics and Information Science, Journal of Quantitative Linguistics 5 (1998) 35-61.
[23] V.V. Bochkarev, E.Y. Lerner, A.V. Shevlyakova, Deviations in the Zipf and Heaps laws in natural languages, Journal of Physics: Conference Series 490 (2014) 012009.
[24] A. Mehri, A.H. Darooneh, A. Shariati, The Complex Networks Approach for Authorship Attribution of Books, Physica A 391 (2012) 2429-2437.
[25] A. Mehri, A.H. Darooneh, The Role of Entropy in Word Ranking, Physica A 390 (2011) 3157-3163.
[26] A. Mehri, M. Jamaati, H. Mehri, Word Ranking in a Single Document by Jensen-Shannon Divergence, Physics Letters A 379 (2015) 1627-1632.
[27] B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, New York, (1982).
[28] K. Falconer, Fractal Geometry, John Wiley & Sons, Chichester, (2003).
[29] A. Eftekhari, Fractal Geometry of Texts: An Initial Application to the Works of Shakespeare, Journal of Quantitative linguistics 13 (2006) 177-193.
[30] M. Ausloos, Measuring Complexity with Multifractals in Texts. Translation Effects, Chaos, Solitons & Fractals 45 (2012) 1349-1357.
[31] K.J. Hsu, A.J. Hsu, Fractal geometry of music, Proceeding of the National Academy of Sciences 87 (1990) 938-941.
[32] A. Mehri, S.M. Lashkari, Power-Law Regularities in Human Language, European Physical Journal B 89 (2016) 241.