[1] J.S. Schwinger, On gauge invariance and vacuum polarization, Physical Review 82, (1951) 664.
[2] A. Di Piazza, C. Muller, K.Z. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Reviews of Modern Physics 84 (2012) 1177.
[3] R. Ruffini, G. Vereshchagin, S.S. Xue, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes, Physics Reports 487 (2010) 1.
[4] R. Durrer, A. Neronov, Cosmological Magnetic Fields: Their Generation, Evolution and Observation, The Astronomy and Astrophysics Review 21 (2013) 62.
[5] E. Mottola, Particle Creation in de Sitter Space, Physical Review D 31 (1985) 754.
[6] J. Martin, Inflationary perturbations: The Cosmological Schwinger effect, Lecture Notes in Physics 738 (2008) 193.
[7] M.B. Fröb, J. Garriga, S. Kanno, M. Sasaki, J. Soda, T. Tanaka and A. Vilenkin, Schwinger effect in de Sitter space, Journal of Cosmology and Astroparticle Physics 04 (2014) 009.
[8] T. Kobayashi, N. Afshordi, Schwinger Effect in 4D de Sitter Space and Constraints on Magnetogenesis in the Early Universe, Journal of High Energy Physics 10 (2014) 166.
[9] E. Bavarsad, C. Stahl and S.S. Xue, Scalar current of created pairs by Schwinger mechanism in de Sitter spacetime, Physical Review D 94 (2016) 104011.
[10] C. Stahl, E. Strobel, S.S. Xue, Fermionic current and Schwinger effect in de Sitter spacetime, Physical Review D 93 (2016) 025004.
[11] T. Hayashinaka, T. Fujita, J. Yokoyama, Fermionic Schwinger effect and induced current in de Sitter space, Journal of Cosmology and Astroparticle Physics 07 (2016) 010.
[12] C. Stahl and S.S. Xue, Schwinger effect and backreaction in de Sitter spacetime, Physics Letters B 760 (2016) 288.
[13] T. Markkanen, A. Rajantie, Massive scalar field evolution in de Sitter, Journal of High Energy Physics 01 (2017) 133.
[14] T. Markkanen, De Sitter Stability and Coarse Graining, The European Physical Journal C 78 (2018) 97.
[15] L. Parker, S.A. Fulling, Adiabatic regularization of the energy-momentum tensor of a quantized field in homogeneous spaces, Physical Review D 9 (1974) 341.
[16] S.A. Fulling, L. Parker, Renormalization in the theory of a quantized scalar field interacting with a robertson-walker spacetime, Annals of Physics 87 (1974) 176.
[17] J.S. Dowker, R. Critchley, Effective Lagrangian and Energy-Momentum Tensor in de Sitter Space, Physical Review D 13 (1976) 3224.
[18] S. Habib, C. Molina-Paris, E. Mottola, Energy-momentum tensor of particles created in an expanding universe, Physical Review D 61 (1999) 024010.
[19] D. Lopez Nacir, F.D. Mazzitelli, Backreaction in trans-Planckian cosmology: Renormalization, trace anomaly and self-consistent solutions, Physical Review D 76 (2007) 024013.
[20] A. Landete, J. Navarro-Salas, F. Torrenti, Adiabatic regularization and particle creation for spin one-half fields, Physical Review D 89 (2014) 044030.
[21] A. Landete, J. Navarro-Salas, F. Torrenti, Adiabatic regularization for spin-1/2 fields, Physical Review D 88 (2013) 061501.
[22] S. Ghosh, Creation of spin 1/2 particles and renormalization in FLRW spacetime, Physical Review D 91 (2015) 124075.
[23] S. Ghosh, Spin 1/2 field and regularization in a de Sitter and radiation dominated universe, Physical Review D 93 (2016) 044032.
[24] ز. سجادینیا، تریس بازبهنجارشده تانسور انرژی-تکانه اسکالرهای شوینگر در فضا-زمان دوسیته 2-بُعدی، پایان نامه کارشناسی ارشد، دانشگاه کاشان، کاشان، ایران (1396).
[24] Z. Sajadi Nia, Renormalized trace of the energy-momentum tensor of the Schwinger scalars in 2D de Sitter spacetime, Thesis for the Degree of Master of Science (MSc), University of Kashan, Kashan, Iran (2017).
[25] م. مرتضیزاده، بررسی تریس تانسور انرژی-تکانه میدان اسکالر در حضور میدان الکتریکی زمینه در فضا-زمان دوسیتر 3 بُعدی، پایان نامه کارشناسی ارشد، دانشگاه کاشان، کاشان، ایران (1396).
[25] M. Mortezazadeh, Investigation of trace energy-momentum tensor of scalar field in presence of an electric field background in 3D de Sitter spacetime, Thesis for the Degree of Master of Science (MSc), University of Kashan, Kashan, Iran (2017).
[26] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge (2010).