[1] J. Wang, Y. Huang, Z. Tian, J. Zhou, Superconvergence analysis of finite element method for the time-dependent Schrödinger equation, Computational & Applied Mathematics 71 (2016) 1960-1972.
[2] C. Duarte, J.T. Odden, An h-p adaptive method using clouds, Computer Methods in Applied Mechanics and Engineering 139 (1996) 237-292.
[3] R.A. Gingold, J.J. Monaghan, Smooth Particle Hydrodynamics: Theory and Application to Non-Spherical Stars, Monthly Notices of the Royal Astronomical Society 181 (1977) 375-389.
[4] B. Nayroles, G. Touzot, p.Villon, Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements, Computational Mechanics 10 (1992) 307-318.
[5] H. Lin, S.N. Atluri, Meshless Local Petrov-Galerkin (MLPG) Method for Convection-Diffusion problems, CMES: Computer Modeling in Engineering &Sciences 1 2 (2000) 45-60.
[6] G.H. Baradaran, M.J. Mahmoodabadi, Optimal Pareto Parametric Anaiysis of Two-Dimensional Steady-state Heat Conduction Problems by MLPG Method, International Journal of Engineering22(2009) 387-406.
[7] D.F. Gilhooley, J.R. Xiao, C.R. Batra, M. A. Mc Carthy, J.W. Gillespie, Two-Dimensional Stress Analysis of Functionally Graded Solids Using The MLPG Method with Radial Basis Functions, Computational Materials Science 41(2008) 467-481.
[8] M. Dehghan, D. Mirzaei, The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation, Engineering Analysis with Boundary Elements 32 (2008) 747-756.
[9] G.H. Baradaran, M.J. Mahmoodabadi, Parametric study of The MLPG Method for The Analysis of Three-Dimensional Steady State Heat Conduction Problems, Strojnicky Casopis, Journal of Mechanical Engineering 61 1 (2010) 22-53.