تاثیر میدان مغناطیسی تولید شده در برهمکنش پالس لیزری پرشدت با پلاسمای کم چگال بر شتاب بسته الکترونی در رژیم حبابی

نوع مقاله : مقاله پژوهشی کامل

نویسنده

عضو هیئت علمی

چکیده

دراین مقاله تاثیر میدان مغناطیسی حاصل از برهمکنش لیزر پرشدت فمتوثانیه ای با پلاسمای کم چگال در رژیم حبابی روی شتاب بسته الکترونی با توزیع یکنواخت گاوسی در سرعت و مکان مورد بررسی قرار گرفته است. دیده شد که میدان مغناطیسی می تواند انرژی نهایی بسته الکترونی را از حدود 1GeVبه حدود 1.2GeVافزایش دهد و پهن شدگی انرژی نهایی را کاهش دهد. همچنین واگرایی نهایی بسته الکترونی نیز در حدود یک مرتبه بزرگی کاهش یافته و برابر با 3-^10*0.38 میلی متر میلی رادیان شده است. علاوه براین، ما مشاهده کردیم میدان مغناطیسی باعث افزایش ده درصدی تعداد الکترونهای شتاب گرفته می شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of magnetic field generated by the interaction of high-intensity laser pulse and low-density plasma on electron bunch acceleration in the bubble regime

چکیده [English]

In this paper, the effect of the magnetic field generated by the interaction of femtosecond high-intensity laser with under-dense plasma in the bubble regime on the acceleration of an electron bunch with Gaussian distribution in velocity and position has been studied. It was seen that the magnetic field could increase the final energy of electron bunch from about 1 GeV to approximately 1.2 GeV and reduces the final energy spread. Also, the final emittance of electron bunch decreased about one order of magnitude and it has been equal to 0.38 * 10^-3 mm mrad. Moreover, we observed that the magnetic field caused ten percent increment in number of accelerated electrons.

کلیدواژه‌ها [English]

  • Laser plasma interaction
  • Electron bunch acceleration
  • Bubble regime
  • Magnetic field
[1] B. Shen,Y. Li, M.Y. Yu, J. Cary,Bubble regime for ion acceleration in a laser-driven plasma, Physical Review E 76 (2007) 055402-055405.
[2] E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators, Reviews of Modern Physics 81(3) (2009) 1229–1285.
[3] V. Malka, J. Faure, Y.A. Gauduel, E. Lefebvre, A. Rousse, K.T. Phuoc, Principles and applications of compact laser–plasma accelerators, Nature Physics 4(6) (2008)  447–453.
[4] S.M. Hooker, Developments in laser-driven plasma accelerators, Nature Photonics 7 (2013) 775–782.
[5] K. Nakajima, Laser electron acceleration beyond 100 GeV, The European Physical Journal Special Topics 223(2014) 999-1016.
[6] Z. Najmudin, M. Tatarakis, A. Pukhov, E.L. Clarke, R.J. Clarke, A.E. Dangor, J. Faure, V. Malka, D. Neely, M.I.K. Santala, K. Krushelnick, Measurements of the Inverse Faraday Effect from Relativistic Laser Interactions with an Underdense Plasma, Physical Review Letters 87 (2001) 215004-215007.
[7] J. Fuchs, G. Malka, J.C. Adam, F. Amiranoff, S.D. Baton, N. Blanchot, A. Heron, G. Laval, J.L. Miquel, P. Mora, H. Pepin, C. Rousseaux, Dynamics of Subpicosecond Relativistic Laser Pulse Self-Channeling in an Underdense Preformed Plasma, Physical Review Letters 80 (1998) 1658-1662.
[8] L. Gorbunov, P. Mora, T.M. Antonsen, Magnetic Field of a Plasma Wake Driven by a Laser Pulse,  Physical Review Letters 76 (1996) 2495-2499.
 
[9] Z.M. Sheng, J. Meyer-ter-vehn, A. Pukhov, Analytic and numerical study of magnetic fields in the plasma wake of an intense laser pulse, Physics of Plasmas 5 (1998) 3764-3773.
[10] T. Tajima, J.M. Dawson, Laser Electron Accelerator, Physical Review Letters43 (1979) 267-270.
[11] E. Esarey, P. Sprangle, J. Krall, A. Ting, Overview of plasma-based accelerator concepts, IEEE Transactions on Plasma Sciences 24 (1996) 252-288.

[12] P. Jha, P. Kumar, A.K. Upadhyaya, G. Raj, Electric and magnetic wakefields in a plasma channel, Physical Review Accelerators and Beams 8 (2005) 071301-071306.

[13] R.N. Sudan, Mechanism for the generation of 109 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target, Physical Review Letters 70 (1993) 3075-3079.
[14] V.K. Tripathi, C.S. Liu, Self‐generated magnetic field in an amplitude modulated laser filament in a plasma, Physics of Plasmas 1 (1994) 990-992.

[15] Y. Horovitz, S. Eliezer, Z. Henis, Y. Paiss, E. Moshe, A. Ludmirsky, M. Werdiger, B. Arad, A. Zigler, The inverse Faraday effect in plasma produced by circularly polarized laser light in the range of intensities 109–1014 W/cm2, Physics Letters A246 (1998) 329-344.

[16] M.G. Haines, Generation of an Axial Magnetic Field from Photon Spin, Physical Review Letters 87 (2001) 135005-135008.
 [17] S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, H. Azechi, Kilotesla magnetic field due to a capacitor-coil target driven by high power laser, Scientific Reports 3 (2013) 1170-1176.
[18] A. Pukhov, J. Meyer-ter-Vehn, Laser wake field acceleration: the highly non-linear broken-wave regime, Applied Physics B 74 (2002) 355-361.
[19] I. Kostyukov, A. Pukhov, S. Kiselev, Phenomenological theory of laser-plasma interaction in “bubble” regime, Physics of Plasmas 11 (2004) 5256-5264.
 
[20] A. Pukhov, S. Gordienko, S. Kiselev, and I. Kostyukov, The bubble regime of laser–plasma acceleration: monoenergetic electrons and the scalability, Plasma Physics and Controlled Fusion 46 (2004) 179-188.
[21] I. Kostyukov, E. Nerush, A. Pukhov, V. Seredov, Electron Self-Injection in Multidimensional Relativistic-Plasma Wake Fields , Physical Review Letters 103 (2009) 175003-175006.

[22] R. Sadighi-Bonabi, S. Rahmatallahpor, H. Navid, E. Lotfi, P. Zobdeh, Z. Reiazie,M. Bostandoust, M.Mohamadian, Energy Evaluation of Mono-Energetic Electron Beam Produced by Ellipsoid Cavity Model in the Bubble Regime, Contributions to Plasma Physics 49 (2009) 49–54.

[23] P. Zobdeh, R.Sadighi-Bonabi, H. Afarideh, Electron trajectory evaluation in laser-plasma interaction for effective output beam, Chinese Physics B 19 (2010) 064210-064214.
[24] R. Sadighi-Bonabi, S.H. Rahmatollahpur, A complete accounting of the monoenergetic electron parameters in an ellipsoidal bubble model, Physics of Plasmas 17 (2010) 033105 033112.
[25] Myung-Hoon Cho, Young-Kuk Kim, and Min Sup Hur, Study of electron trapping by a transversely ellipsoidal bubble in the laser wake-field acceleration, Physics of Plasmas 20 (2013) 093112-093117.
[26] W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, Cs. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, E. Esarey, Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime, Physical Review Letters 113 (2014) 245002-245006.
[27] Y.F. Li, D.Z. Li, K. Huang, M.Z. Tao, M.H. Li, J.R. Zhao, Y. Ma, X. Guo, J.G. Wang, M. Chen, N. Hafz, J. Zhang, L.M. Chen,Generation of 20 kA electron beam from a laser wakefield accelerator, Physics of Plasmas 24 (2017) 023108-023114.
[28] M.J.H. Luttikhof, A.G. Khachatryan, F.A. van Goor, K.J. Boller, The effect of the vacuum-plasma transition and an injection angle on electron-bunch injection into a laser wakefield, Physics of Plasmas 14 (2007) 083101 -083109.
[29] A.G. Khachatryan, Trapping, compression, and acceleration of an electron bunch in the nonlinear laser wakefield, Physical Review E 65 (2002) 046504- 046512.

[30] P. Mora, Three‐dimensional effects in the acceleration of test electrons in a relativistic electron plasma wave,Journal of Applied Physics 71 (1992) 2087-2092.