[1]F.H. Meisner, A. Honecker, W. Brenig, Thermal transport of the XXZ chain in a magnetic field, Physical Review B 71 (2005) 184415.
[2] S. Langer, R. Darradi, F. Heidrich-Meisner, W. Brenig, Field-dependent spin and heat conductivities of dimerized spin- chains, Physical Review B 82 (2010) 104424.
[3] M. Sentef, M. Kollar, A.P. Kampf, Spin transport in Heisenberg antiferromagnets in two and three dimensions Physical Review B 75(2007) 214403.
[4] Z. Chen, T. Datta, D.X. Yao, Spin transport in the Néel and collinear antiferromagnetic phase of the two dimensional spatial and spin anisotropic Heisenberg model on a square lattice, The European Physical Journal B 86 63 (2013).
[5] Y. Kubo, S. Kurihara, Spin conductivity in two-dimensional non-collinear antiferromagnets, Journal of the Physical Society of Japan 82 11 (2013)113601.
[6] S. Maekawa, A flood of spin current, Nature Materials 8 (2009)777-778.
[7] H. Adachi, J.I. Ohe, S. Takahashi, S. Maekawa, Linear response theory of spin seebeck effect in ferromagnetic insulators, Physical Review B 83 (2011) 094410.
[8] X. Zotos, P. Prelovsek, Evidence for ideal insulating or conducting state in a one-dimensional integrable system, Physical Review B 53(1996) 983.
[9] A.S.T. Pires, L.S. Lima, Low-temperature spin transport in a S=1 one-dimensional antiferromagnet, Journal of Physics: Condensed Matter 21 (2009) 245502.
[10] F. Meie, D. Loss, Magnetization transport and tuantized spin conductance, Physical Review Letters 90 (2003) 167204.
[11] K.A. Van Hoogdalem, D. Loss, Frequency-dependent transport through a spin chain, Physical Review B 85 (2012) 054413.
[12] K.A. Van Hoogdalem, D. Loss, Magnetic texture-induced thermal Hall effects, Physical Review B 87(2013) 024402.
[13] W. Zhuo, X. Wang, Y. Wang, Spin transport properties in Heisenberg antiferromagnetic spin chains: Spin current induced by twisted boundary magnetic fields, Physical Review B 73 (2006) 212413.
[15] N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. Van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448 (2007) 571-574.
[16] S. Sanvito, Organic electronics: Memoirs of a spin, Nature Nanotechnology 2(2007) 204-206.
[17] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials 6(2007)183-191.
[18] F.Sattari, E.Faizabadi, Spin transport through electric field modulatedgraphene periodic ferromagnetic barriers, Physica B, 434 (2004) 69-73.
[19] J.H. Garcia, G.T. Rappoport, Kubo–Bastin approach for the spin Hall conductivity of decorated graphene
, 2D Materials 3 (2016).
[20] Z. Liu, L. Jiang, Y. Zheng, Conductivity tensor of graphene dominated by spin-orbit coupling scatterers: A comparison between the results from Kubo and Boltzmann transport theories, Nature scientific reports 6 (2016) 23762.
[21] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science 313 (2006) 951-954.
[22] I. Zanella, S. Guerini, S.B. Fagan, J.M. Filho, A.G.S. Filho, Chemical doping-induced gap opening and spin polarization in graphene, Physical Review B 77(2008) 073404.
[23] D.S.L. Abergel, A. Russell, V.I. Falko, Visibility of graphene flakes on a dielectric substrate, Applied Physics Letters 91 (2007) 063125.
[28] P. fazekas, Lecture notes on quantum magnetism, World Scientific Publishing Co. Re. Ltd (1998).