Investigation of sintering time on structural, magnetic and dielectric properties strontium spinel ferrite nanoparticles (SrFe2O4) synthesized by sol-gel method

Document Type : Full length research Paper

Authors

Department of physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

In this paper, strontium spinel ferrite (SrFe2O4) nanoparticles were prepared by sol-gel method. Also, in order to the effect of sintering time on the structural, magnetic and dielectric properties of SrFe2O4 nanoparticles, first, the gel of the metal nitrates with certain molar ratio prepared and then the prepared powders were calcined at 700 ℃ with different times. The results of XRD show that the main phase of SrFe2O4 increase by increasing sintering times. Also, the FESEM images of the samples show that the particles of SrFe2O4 are homogeneous, but as the samples have magnetic properties, thus agglomeration of them have been occurred. The results of the samples FT-IR show that the sites of tetrahedral and octahedral which are important properties of ferrites were formed. The magnetic properties of the samples show that by increasing the sintering time, the amount of Ms and Hc has been increased which these changes are due to the distribution of ions and shape anisotropy of the nanoparticles. The results of the measurements of dielectric of the samples show that the both ε and for the samples decrease rapidly with increasing applied field frequency, while the ac electrical conductivity has been increased.

Keywords


 
[1] C.B. Carter, M.G. Norton, Ceramic materials Springer (2007).
[2] B.D. Cullity, C.D. Graham,Introduction to Magnetic Materials, 2nd Edition ed., John Wiley &Sons Inc., Hoboken, New Jersey, (2009).
[3] Z. Yue, J. Zhou, L. Li, H. Zhange, Z. Gui, Synthesis of nanocrystalline NiCuZn ferrite powders by Sol-Gel auto combustion method, Journal of Magnetism and magnetic materials 208 (2000) 55-60.
[4] A.K. Bandyopadhyay, Nano Materials, New Age International Ltd (2008).
[5] B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications, Journal of Molecular Science 14 (2013) 21266-21305.
[6] D.S. Mathew, R.S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis inmicroemulsions, Chemical Engineering Journal 129 (2007) 51–65.
[7] K. Jain, Microwave Ferrite Materials, Devices, Invert is Journal of Science & Technology 1 (2007)221-228.
 
[8] Z. Sharifi, S.E. Musavi Ghahfarokhi, M. Zargar Shushtari, Investigation the effect of annealing temperature on the structural and magnetic properties of lead spinel ferrite nanoparticles (PbFe2O4), Journal of Research on Many-body Systems, First national conference of nanophysics and metamaterial from simulation to industry 6(2015) 43-51.
[9] A. Manikandan, J. Judith Vijaya, M. Sundararajan, C. Meganathan, L. John Kennedy, M. Bououdina, Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method, Journal of Superlattices and Microstructures 64 (2013) 118–131.
[10] R. Tholkappiyan, K. Vishista, Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant, International Journal of Materials Research 106 (2015) 127 – 136.
[11] N. Kaur, M. Kaur, Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles,Processing and Application of Ceramics 8 (2014) 137–143.
[12] M.M. Rashad, Magnetic properties of nanocrystalline magnesium ferrite by co-precipitation assisted with ultrasound irradiation, Journal of Materials Sciences 42 (2007) 5248-5255.
[13] K. Shyam Gore, S. Santosh Jadhav,V. Vijaykumar Jadhav, S.M. Patange, Mu. Naushad, S. Rajaram  Mane, Kwang Ho Kim,The structural and magnetic properties of dual phase cobalt ferrite, in Scientific Reports (2017).
[14] S. Sagadevan, K. Pal, Z. Zaman Chowd.huryand .Md Enamul Hoque, Structural, optical and dielectric investigation of CdFe2O4 nanoparticles, Materials Research Express 4 (2017) 075025.
[15] S. Verme, J. Kerned, A. Patina, P.A. Joy, Low temperature synthesis of nanocryctalline powders of lithium ferrite by an auto combustion method using citric acid and glycine, material letter 59(2005) 2630-2633.
[16] R. Vogel, B. Evans, Solid state-and magneto-chemistry of the SrO-Fe2O3 system: III. The non-existence of single-phase SrFe2O4, Journal of Magnetism and Magnetic Materials 13 (1979) 294-300.
[17] H.I. Saleh, Reaction mechanisms of strontium ferrites synthesis, Journal of the Chinese Chemical Society 49 (2002) 341-348.
[18] S.K. Pardeshi, R.Y. Pawar, SrFe2O4 complex oxide an effective and environmentally benign catalyst for selective oxidation of styrene, Journal of Molecular Catalysis A: Chemical 334 (2011) 35-43.
[19] A.G. Mamalis, D.E. Manolakos, A. Szalay, G. Pantazopoulos, processing of high temperature superconductors at high strain rates, Technomic Publishing Company Inc (2000).
[20] A. Yang, C.N .Chinnasamy, J.M. Greneche, Y. Chen, S.D. Yoon, K. Hsu, C. Vittoria, V.G. Harris, Applid Physics Letters 94 (2009) 113109.
[21] P.J. van der Zaag, V.A.M. Brabers, M.T. Johnson, A. Noordermeer, P.F. Bongers, Physical Review B 51 (1995) 12009.
[22] M. Atif, S.K. Hasanian, Magnetization of sol–gel prepared Zinc ferrite nanoparticles: effects of inversion and particle size, Solid State Communications 138 (2006)416–421.
[23] K.S. Lee, S.T. Myung, K. Amine, H. Yashiro, Y.K. Sun, Structural and electrochemical properties of layered Li
[Ni1–2xCox Mnx] O2 (x = 0.1–0.3) positive electrode materials for li– ion batteries, Journal Electrochemical Society 154 (2007) 971–977.
[24] P. Vaqueiro, M. Lopez-Quintela, Influence of complexing Agents and pH on Yttrium- Iron Garnet Syntehesized by the Sol-gel method, chemical materials 9 (1997) 2836-2841.
[25] J. Silva, W. Brito, N. Mohallem, Influence of heat treatment on cobalt ferrite ceramic powders, Materials Science and Engineering B 112 (2004) 182-184.
[26] R.D. Waldron, Infrared spectra of ferrites, physical review 99 (1955)1727-1735.
[27] B.K. Chougule, D.R. Patil, Effect of copper substitution on electrical and magnetic properties of NiFe2O4 ferrite, Journal of materials chemistry and physics 117 (2009) 35-40.
[28] Z. Yue, W. Guo, J. Zhou, Z. Gui, L.Li, Synthesis of nanocrystalline ferrites by sol-gel combustion process: the influence of pH value of solution, Journal of Magnetism and Magnetic Materials (2004)216-223.
[29] A.G. Deviprasad, J. Komal kumar, M. ZAREI, Shubha gopal, FT-IR Spectroscopic studies on cleome gynandra comparative analysis of  functional group before and after extraction, (2013).
[30] S. Jin, A Common Regularity of Stoichiometry-Induced Morphology Evolution of Transition Metal Carbides, Nitrides, and Diborides during Self-Propagating High-Temperature Synthesis, Journal of Crystal Growth 12 (2012) 2814−2824.
[31] P. Shankar, Bhavyashri, R.S. Raveendra, A. Jayasheelan, C.S. Prakash, B. M. Nagabhushana, H. Nagabhushana, B. Daruka Prasad,Synthesis, characterization and magnetic properties of CaFe2O4 nanoparticles by solution combustion method,International journal of advanced scientific and technical research 1(2015)2249-9954.
[32] M. Hue Dang, V. Dung Trinh, D. Huan Bui, M. Huong Phan and Dang Chinh Huynh, Sol–gel hydrothermal synthesis of strontium hexaferrite nanoparticles and the relation between their crystal structure and high coercivity properties,Advances in  Natural Sciences: Nanosciences and Nanotechnology 3 (2012) 025015.
 
[33]H. Ghorbani, M. Eshraghi, Investigation of chromium doping effect on the structural and magnetic properties of MnFe2-xCrxO4 ferrite nanoparticles, Journal of Research on Many-body Systems 6 (2017) 1-9.
 
[34] P. Kameli,M. Eshraghi, M. Roshanmehr, F. Khademi, The Effect of Annealing Temperature on Structural, Electrical and Magnetic Properties of La0.9Sr0.1MnO3 Manganite, Journal of Research on Many-body Systems 2 (2013) 35-41.
 
[35] F. Taleshi, A. Zolfaghari, A. Pahlavan, Synthesis of Cu0.5Mg0.5Fe2O4 nanoparticle by chemical precipitation method and its effect on reduction of charge transfer resistant in electron transfer systems, Journal of Applied Chemistry 10(2015)23-28.
[36] A. Khataee, G.A. Mansoori, nanostructured titanium dioxide materials properties preparation and applications, (2012).
[37] ع. سیمچی، آشنایی بانانوذرات:  خواص، روش‌های تولید و کاربرد، انتشارات علمی دانشگاه صنعتی شریف، تهران، (1392).
[37] A.Simchi, Introduction to Nanoparticles: Properties, Production Methods and Applications, Sharif University of Technology Scientific Publications, (2013).
[38] P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar,Effect of Ni doping on structural and magnetic properties of Co1–xNixFe1.9Mn0.1O4Journal of Magnetism and Magnetic Materials 322 (2010)718-726.
[39] R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Surface spin disorder in ferrite nanoparticles, Journal of Applied Physics 81 (1997) 5552–5557.
[40] J.R. Hook, H.E. Hall, Solid State Physics: John Wiley & Sons, (1995).
[41] M. Rahimi, P. Kameli, M. Ranjbar, H. Salamati, The effect of sintering temperature on evolution of structural and magnetic properties of nanostructured Ni0.3Zn0.7Fe2O4 ferrite, Journal of  Nanoparticle Research 15 (2013)1865.
[42] N. Poudyal, Fabrication of suoerparamagnetic and ferromagnetic nanoparticles, the univercity of texas a arlington, (2008).
[43] Y. Li, R. Liu, Z. Zhang , C. Xiong , Synthesis and characterization of nanocrystalline BaFe9.6Co0.8Ti0.8M0.8O19 particles, Materials 64 (2000) 256-259.
[44] L. Kumar, M.Kar, Influence of Al3+ concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite, Journal of Magnetism and Magnetic Materials 323(2011)2042-2048.
[45] C.C. Chauhan, R.B. Jotania, Microstructural, thermal, magnetic and dielectric properties of cobalt doped barium calcium hexaferrite prepared by a sol-gel route, International Journal of Advanced Engineering Technology 3 (2012) 135-139.
[46] A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Giant dielectric constant response in a copper-titanate, Solid State Commun 115 (2000) 217-220.
[47] ن. حیدری، س.ا. موسوی قهفرخی، م. زرگرشوشتری، بررسی نسبت مولی اسید سیتریک بر خواص ساختاری، مغناطیسی و دی‌الکتریکی نانوساختارهای هگزافریت نوعW با ترکیبSrNi2Fe16O27 ، مجلة پژوهش سیستم‌های بس‌ذره‌ای، 6، (1395)، 35-48.
[47]N.Heidary, S.E. Mousavi Ghahfarokhi, M. Zargar Shoushtari,Investigating molar ratio of citric acid on the structural, magnetic anddielectric properties of SrNi2Fe16O27 nanostructures, Journal of Research on Many-body Systems 6 (2016) 35-48.
[48] E.J.W. Verwey, J.H. de Boer, Cation arrangement in a few oxides with crystal structures of the spinel type, Recueil des Travaux Chimiques des Pays-Bas 55 (1936) 531–540.
[49] M. Anis-ur-Rehman, G. Asghar, Variation in structural and dielectric properties of co-precipitated nanoparticles strontium ferrites due to value of pH, Journal of Alloys andCompounds 509 (2011) 435-439.
[50] M.J. Iqbal, M.N. Ashiq, I.H. Gul, Physical, electrical and dielectric properties of Ca substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method, Magnetism and Magnetic Materials 322, (2010) 1720.
[51] M.J. Iqbal, S. Farooq, Impact of Pr–Ni substitution on the electrical and magnetic properties of chemically derived nanosized strontium–barium hexaferrites, Journal of Alloys and Compounds 505 (2010) 560.
[52] M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr-Cu substituted strontium hexaferrite nanoparticles synthesized by coprecipitation method, Chemical Engineering Journal 136 (2008) 38