Comparative Analysis of the Static and Dynamic Performances of Quantum-Dot lasers and Quantum Cascade Lasers Using Rate Equations Model

Document Type : Full length research Paper

Author

Electrical Deptment, Faculty of Engineering, Islamic Azad University, Islamshahr Branch, Tehran, Iran.

Abstract

In this paper, the static and dynamic performances of quantum-dot (QD) semiconductor lasers and quantum cascade (QC) lasers are characterized and analyzed comparatively using the standard rate equations model. Using the presented model, the effect of photon lifetime on both the device’s output characteristics is investigated. Simulated results show that due to the ultrafast nature of intersubband transitions (ISTs) in QC lasers that dominantly induced by the longitudinal optical (LO) phonon emission with a picosecond time scale, the threshold current in QC lasers are much larger than is common for QD lasers, in which the intrinsic carrier lifetime is on the order of a few nanoseconds due to the nature of band-to-band Auger recombination process. Additionally, since the LO-phonon scattering process in QC lasers is an ultra-fast mechanism, transient oscillations of the photon density are overdamped, and no resonance appears in the frequency response. This is in contrast with the transient oscillations and frequency response of QD lasers. For comparison, this unique feature makes QC lasers ideally suited for high-speed operation.

Keywords

Main Subjects


[1] M. Sugawara, Self-Assembled InGaAs/GaAs Quantum Dots, Semiconductor and Semimetals, Academic, New York, (vol. 60, 1999).
 
[2] D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures, Wiley, New York, (1998).
 
[3] G.T. Liu, A. Stintz, H. Li, K.J. Malloy, L.F. Lester, Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well, Electronics Letters 35 (1999) 1163-1165.
 
[4] H. Saito, K. Nishi, A. Kamei, S. Sugou, Low chirp observed in directly modulated quantum dot lasers, IEEE Photonics Technology Letters 12 (2000) 1298-1300.
 
 
[5] M. Sabaeian, S.A. Hoseini, M. Shahzadeh, I. Kazeminezhad, Investigation of size effect on the emission properties of InAs/GaAs conical-shaped quantum dot lasers, Journal of Research on Many-body Systems 4 (2014) 55-67.
 
[6] J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum Cascade Lasers, Science 264 (1994) 553-556.
 
[7] J. Faist, F. Capasso, D.L. Sivco, A.Y. Cho, Intersubband Transition in Quantum wells, Physics and Device, Application II, Academic, New York, (2000).
 
[8] R. Paiella, Intersubband Transition in Quantum structures, McGraw-Hill, (2005).
 
[9] L. Drzewietzki, G.A.P. The, M. Gioannini, S. Breuer, I. Montrosset, W. Elsaber, M. Hopkinson, M. Krakowski, Theoretical and experimental investigations of temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser, Optics Communications 283 (2010) 5092-5098.
 
[10] K. Ludge, M.J.P. Bormann, E. Malic, P. Hovel, M. Kuntz, D. Bimberg, A. Knorr, E. Scholl, Turn-on dynamics and modulation response in semiconductor quantum dot lasers, Physical Review B 78 (2008) 035316.
 
[11] C. Wang, B. Lingnau, K. Ludge, J. Even, F. Grillot, Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state, IEEE Journal of Quantum Electronics 50 (2014) 723-731.
 
[12] A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J.X. Chen, A. Fiore, R. Scollo, Two-state switching and dynamics in quantum dot two-section lasers, Journal of Applied Physics 100 (2006) 113104.
 
[13] F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, S. Loualiche, Spectral analysis of 1.55 μm InAs-InP(113)B quantum-dot lasers based on a multipopulation rate equations model, IEEE Journal of Quantum Electronics 45 (2009) 872-878.
 
[14] F. Grillot, C. Wang, N.A. Naderi, J. Even, Modulation properties of self-injected quantum-dot semiconductor diode lasers, IEEE Journal of Selected Topics in Quantum Electronics 19 (2013) 1900812-1900812.
 
[15] S. Breuer, M. Rossetti, L. Drzewietzki, P. Bardella, I. Montrosset, W. Elsaber, Joint experimental and theoretical investigations of two-state mode locking in a strongly chirped reverse-biased monolithic quantum dot laser, IEEE Journal of Quantum Electronics 47 (2011) 1320-1329.
 
[16] A.B. Krysa, D.G. Revin, J.P. Commin, C.N. Atkins, K. Kennedy, Y. Qiu, T. Walther, J.W. Cockburn, Room-temperature GaAs/AlGaAs quantum cascade lasers grown by metal-organic vapor phase epitaxy, IEEE Photonics Technology Letters 23 (2011) 774-776.
 
[17] H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, C. Sirtori, 300 K operation of GaAs-based quantum-cascade laser at λ ~ 9 μm, Applied Physics Letters 78 (2001) 3529-3531.
 
[18] H.R. Yousefvand, Modeling of mid-infrared quantum cascade lasers: the role of temperature and operating field strength on the laser performance, Optics Communications 395 (2017) 61-71.
 
[19] A. Hamadou, J.L. Thobel, S. Lamari, Modelling of temperature effects on the characteristics of mid-infrared quantum cascade lasers, Optics Communications 281 (2008) 5385-5388.
 
[20] H.R. Yousefvand, A versatile physics-based circuit model for mid-infrared quantum cascade lasers Journal of Lightwave Technology 34 (2016) 1031-1037.
 
[21] C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Recent progress in quantum cascade lasers and applications, Reports on Progress in Physics 64 (2001) 1533-1601.
 
 [22]Y.Yekta kiya, E. Rajaei, Z. Danesh, Effect of tunneling injection on the modulation response of quantum dot lasers, Iranian Journal of Physics Research, 13  4 (2014) 421-429.
[23] H.R. Yousefvand, V. Ahmadi, Enhanced performance of quantum cascade Raman laser, Physica E: Low-dimensional Systems and Nanostructures 69 (2015) 243-248.
[24] R. Paiella, R. Martini, F. Capasso, C. Gmachl, H.Y Hwang, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, E.A. Whittaker, H.C Liu, High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers, Applied Physics Letters 79 (2001) 2526-2528.